Startseite Pseudo orthogonal Latin squares
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pseudo orthogonal Latin squares

  • Shahab Faruqi EMAIL logo , S. A. Katre und Manisha Garg
Veröffentlicht/Copyright: 16. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two Latin squares A, B of order n are called pseudo orthogonal if for any 1 ≤ i, jn there exists a k, 1 ≤ kn, such that A(i, k) = B(j, k). We prove that the existence of a family of m mutually pseudo orthogonal Latin squares of order n is equivalent to the existence of a family of m mutually orthogonal Latin squares of order n. We also obtain exact values of clique partition numbers of several classes of complete multipartite graphs and of the tensor product of complete graphs.


Note: Originally published in Diskretnaya Matematika (2020) 32, №3, 113–129 (in Russian).



e-mail:

Acknowledgement

The authors thank Bhaskaracharya Pratishthana (Institute of Mathematics), Pune, for certain facilities and A. Zubkov for his helpful comment regarding computational complexity. The second author thanks support from Lokmanya Tilak Chair, S. P. Pune University, for research facilities.

References

[1] Bolshakova N. S., “The intersection number of complete r-partite graphs”, Discrete Math. Appl., 18:2 (2008), 187–197.10.1515/DMA.2008.015Suche in Google Scholar

[2] Bose R.C., Shrikhande S.S., Parker E.T., “Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture”, Canad. J. Math., 12 (1960), 189–203.10.4153/CJM-1960-016-5Suche in Google Scholar

[3] Erdös P., Goodman A.W., Pósa L., “The representation of a graph by set intersections”, Canad. J. Math., 18 (1966), 106–112.10.4153/CJM-1966-014-3Suche in Google Scholar

[4] Hedayat A., “An application of sum composition: A self orthogonal Latin square of order ten”, J. Comb. Theory, Ser. A, 14:2 (1973), 256–260.10.1016/0097-3165(73)90027-7Suche in Google Scholar

[5] Hon W.-K. et al., “Edge-clique covers of the tensor product”, Proc. 10th Int. Conf. Algor. Aspects Inf. Manag., Vancouver,, 2014, 66–74.10.1007/978-3-319-07956-1_7Suche in Google Scholar

[6] Katre S.A., Yahyaei L., Arumugam S., “Coprime index of a graph”, Electr. Notes Discr. Math., 60:Suppl. C (2017), 77–82.10.1016/j.endm.2017.06.011Suche in Google Scholar

[7] Keedwell A.D., Dénes J., Latin Squares and their Applications, Elsevier, 2015.Suche in Google Scholar

[8] Laywine C.F., Mullen G.L., Discrete Mathematics Using Latin Squares, J. Wiley & Sons, 1998.Suche in Google Scholar

[9] Lindner C., Rodger C., Design Theory, CRC Press, Boca Raton, FL, 1997.Suche in Google Scholar

[10] Rodger C.A., Lindner C.C., Design theory, Chapman and Hall/CRC, 2008.Suche in Google Scholar

[11] Stinson D.R., Combinatorial Designs: Constructions and Analysis, Springer Sci.& Busin. Media, 2007.Suche in Google Scholar

[12] West D. B., Introduction to Graph Theory, Prentice Hall, India Learning Private Ltd, 2002.Suche in Google Scholar

Received: 2020-04-16
Published Online: 2021-02-16
Published in Print: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2021-0002/html?lang=de
Button zum nach oben scrollen