Startseite Bounds on the frequencies of tuples on parts of the period of linear recurring sequences over Galois rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bounds on the frequencies of tuples on parts of the period of linear recurring sequences over Galois rings

  • Anton R. Vasin EMAIL logo
Veröffentlicht/Copyright: 20. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the frequencies of tuples in linear recurring sequences (LRS) of vectors over Galois rings. By means of an estimate of an exponential sum some nontrivial bounds on the frequencies of elements in LRS are derived. It is shown that these bounds are in some cases sharper than known results.


Originally published in Diskretnaya Matematika (2019) 31, №2, 57–68 (in Russian).


References

[1] V.L. Kurakin, A.S. Kuzmin, A.V. Mikhalev, A.A. Nechaev, “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793-2915.10.1007/BF02362772Suche in Google Scholar

[2] A.S. Kuzmin, V.L. Kurakin, A.A. Nechaev, “Pseudorandom and multilinear sequences”, Trudy po diskretnoy matematike, 1 (1997), 139-202 (in Russian).Suche in Google Scholar

[3] O.V. Kamlovskii, “Frequency characteristics of coordinate sequences of linear recurrences over Galois rings”, Izv. Math., 77:6 (2013), 1130–1154.10.1070/IM2013v077n06ABEH002672Suche in Google Scholar

[4] O.V. Kamlovskii, “The Sidel’nikov method for estimating the number of signs on segments of linear recurrence sequences over Galois rings”, Math. Notes, 91:3 (2012), 354–363.10.1134/S0001434612030054Suche in Google Scholar

[5] M.M. Glukhov, “Application of the Niederreiter–Sparlinsky method for estimating incomplete trigonometric sums to sums over Galois rings”, Algebra and Logic: Theory and Applications (Int. conf.Krasnoyarsk, July 21-27, 2013), 37-39 (in Russian).Suche in Google Scholar

[6] A.A. Nechaev, “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384.10.1515/dma.1991.1.4.365Suche in Google Scholar

[7] B.R. McDonald, Finite rings with identity, Pure Appl. Math., 28, Dekker, New York, 1974, 429 pp.Suche in Google Scholar

[8] A.A. Nechaev, “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311.10.1070/SM1994v078n02ABEH003470Suche in Google Scholar

[9] H. Niederreiter, I.E. Shparlinsky, “On the distribution and lattice structure of nonlinear congruential pseudorandom numbers”, Finite Fields Appl., 5 (1999), 246-253.10.1006/ffta.1999.0257Suche in Google Scholar

[10] P. Sole, D. Zinoviev, “Inversive congruential pseudorandom numbers over Galois rings”, Eur. J. Comb., 30:2 (2009), 458-467.10.1016/j.ejc.2008.04.004Suche in Google Scholar

[11] E.V. Vernigora, “Inversive congruential generator over a Galois ring of dimension pl”, J. Math. Sci., 182:1 (2012), 108-116.10.1007/s10958-012-0732-4Suche in Google Scholar

[12] O.V. Kamlovskii, A. S. Kuzmin, “Estimates of the frequencies of the appearance of elements in linear recurrent sequences over Galois rings”, Fund. i prikl. matem., 6:4 (2000), 1083–1094 (in Russian).Suche in Google Scholar

[13] O.V. Kamlovskii, “Frequency characteristics of linear recurrence sequences over Galois rings”, Russian Acad. Sci. Sb. Math., 200:4 (2009), 499–519.10.1070/SM2009v200n04ABEH004006Suche in Google Scholar

Received: 2019-03-28
Published Online: 2019-10-20
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2019-0031/html
Button zum nach oben scrollen