Startseite Cardinality of generating sets for operations from the Post lattice classes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cardinality of generating sets for operations from the Post lattice classes

  • Stepan A. Komkov EMAIL logo
Veröffentlicht/Copyright: 13. Juni 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We obtain precise values of cardinality of minimal generating sets for all Cartesian products of two-element set with respect to an arbitrary set of Boolean operations from the central part of the Post lattice. For the case of sets containing operations from the remaining classes of the Post lattice we obtain cardinality estimations that are accurate up to one.


Originally published in Diskretnaya Matematika (2017) 30, №4, 19–38 (in Russian).


References

[1] Anseľ Zh., “On the number of monotone Boolean functions of n variables”, Kibern. sb. Nov. ser., 5, 1968, 53–63 (in Russian).Suche in Google Scholar

[2] Blokhina G. N., “On the predicate description of Post classes”, Diskretniy analiz, 1970, №16, 16–29 (in Russian).Suche in Google Scholar

[3] Zhuk D. N., “The predicate method to construct the Post lattice”, Discrete Math. Appl., 21:3 (2011), 329–344.10.1515/dma.2011.022Suche in Google Scholar

[4] Kudryavtsev V. B., Gasanov E. E., Podkolzin A. S., Foundations of the theory of intelligent systems, MAKS Press, Moscow, 2016 (in Russian), 612 pp.Suche in Google Scholar

[5] Nikoľskiy S. M., Course of mathematical analysis, Textbook for universities, 6, FIZMATLIT, Moscow, 2001 (in Russian), 592 pp.Suche in Google Scholar

[6] Katona G., “A theorem of finite sets”, Theory of Graphs, Proc. colloq. (Hungary September 1966), Acad. Press, New York and London, 1968, 187–207.Suche in Google Scholar

[7] Kruskal J. B., “The number of simplices in a complex”, Math. optimiz. techn., 10 (1963), 251–278.10.1525/9780520319875-014Suche in Google Scholar

[8] Post E., Two-valued iterative systems of mathematical logic, Ann. Math. Stud., 5, PrincetonUniv. Press, Princeton, 1941, 122 pp.10.1515/9781400882366Suche in Google Scholar

[9] Sperner E., “Ein Satz über Untermengen einer endlichen Menge”, Math. Zeitschrift, 27:1 (1928), 544–548.10.1007/BF01171114Suche in Google Scholar

[10] Zhuk D., “The size of generating sets of powers”, 2015, arXiv: abs/1504.02121.Suche in Google Scholar

Received: 2017-10-25
Revised: 2017-11-11
Published Online: 2019-06-13
Published in Print: 2019-06-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2019-0015/html?lang=de
Button zum nach oben scrollen