Startseite Reduced critical Bellman–Harris branching processes for small populations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reduced critical Bellman–Harris branching processes for small populations

  • Vladimir A. Vatutin EMAIL logo , Wenming Hong und Yao Ji
Veröffentlicht/Copyright: 26. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A critical Bellman-Harris branching process {Z(t),t ≥ 0} with finite variance of the offspring number is considered. Assuming that 0 < Z(t) ≤ φ(t), where either φ(t) = o(t) as t → ∞ or φ(t) = at,a>0, we study the structure of the process where Z(s,t) is the number of particles in the initial process at moment s which either survive up to moment t or have a positive number of descendants at this moment.


Originally published in Diskretnaya Matematika (2018) 30,No 3, 25–39 (in Russian).

Funding

The work of V.A. Vatutin was supported by the Russian Science Foundation under grant no. 14-50-00005, the work of Wenming Hong and Yao Ji was supported by Natural Science Foundation of China under grants 11531001 and 11626245.


References

[1] Athreya K. B., “Coalescence in the recent past in rapidly growing populations”, Stoch. Proc. and their Appl., 122:11 (2012) 3757–376610.1016/j.spa.2012.06.015Suche in Google Scholar

[2] Athreya K. B., “Coalescence in critical and subcritical Galton-Watson branching processes”, J. Appl. Probab., 49:3 (2012) 627–638Suche in Google Scholar

[3] Durrett R., “The genealogy of critical branching processes”, Stoch. Proc. and their Appl. 8:1 (1978) 101–11610.1016/0304-4149(78)90071-6Suche in Google Scholar

[4] Fleischmann K., Prehn U., “Ein Grenzfersatz fur subkritische Verzweigungsprozesse mit eindlich vielen Typen von Teilchen”, Math. Nachr. 64 (1974),233–24110.1002/mana.19740640123Suche in Google Scholar

[5] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton-Watson processes”, Math. Nachr. 79 (1977) 357–36210.1002/mana.19770790121Suche in Google Scholar

[6] Goldstein M., “Critical age-dependent branching processes: single and multitype”, Z. Wahrscheinlichkeitstheor. verw. Geb. 17:2 (1971) 74–7810.1007/BF00538476Suche in Google Scholar

[7] Harris S. C., Johnston S. G. G., Roberts M. I., “The coalescent structure of continuous-time Galton-Watson trees”, 2017 https://arxiv.org/pdf/1703.00299.pdfSuche in Google Scholar

[8] Johnston S. G. G., “Coalescence in supercritical and subcritical continuous-time Galton-Watson trees”, 2017 https://arxiv.org/pdf/1709.008500v1.pdfSuche in Google Scholar

[9] Lambert A., “Coalescence times for the branching process”, Adv. Appl. Probab. 35:4 (2003) 1071–108910.1239/aap/1067436335Suche in Google Scholar

[10] Le V., “Coalescence times for the Bienaym\'e-Galton-Watson process”, J. Appl. Probab. 51:1 (2014) 209–218Suche in Google Scholar

[11] Liu M., Vatutin V., “Reduced processes for small populations”, Theory Probab. Appl. 63:4 (2018) (toappear)10.1137/S0040585X97T989301Suche in Google Scholar

[12] Sagitov S. M., “Reduced multitype critical Bellman–Harris branching process”, Theory Probab. Appl. 30:4 (1986) 783–79610.1137/1130097Suche in Google Scholar

[13] Topchii V. A., “A local limit theorem for critical Bellman–Harris processes with discrete time”, In: Limit theorems of probability theory and related questions, Trudy Inst. Mat., Nauka, Sibirsk. Otdel., Novosibirsk 1 (1982) 197–122 in RussianSuche in Google Scholar

[14] Vatutin V. A., “Discrete limit distributions for the number of particles in the critical Bellman–Harris branching processes”, Theory Probab. Appl. 22:1 (1977) 146–15210.1137/1122014Suche in Google Scholar

[15] Vatutin V. A., “Distance to the nearest common ancestor in Bellman–Harris branching processes”, Math. Notes 25:5 (1979) 378–38210.1007/BF01224843Suche in Google Scholar

[16] Vatutin V. A., “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math. 158(1983) 9–31Suche in Google Scholar

[17] Zubkov A.M., “Limit distributions of the distance to the nearest common ancestor”, Theory Probab. Appl. 20:3 (1975) 602–612Suche in Google Scholar

Received: 2018-05-17
Published Online: 2018-10-26
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0028/pdf
Button zum nach oben scrollen