Startseite Limit theorems for bounded branching processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Limit theorems for bounded branching processes

  • Gleb K. Kobanenko EMAIL logo
Veröffentlicht/Copyright: 26. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The conditions under which the nonextincting trajectories of a discrete time bounded branching process with probability 1: either only finitely many times hit the upper boundary, either infinitely often hit the upper boundary, or coincide with the upper boundary after some random moment


Originally published in Diskretnaya Matematika (2017) 29, №2, 18–28 (in Russian).


Acknowledgement

The author is indebted to A.M.Zubkov for the problem statement and constructive discussions.

References

[1] Afanasiev V. I. “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl. 26 2 2016 71-8810.1515/dma-2016-0006Suche in Google Scholar

[2] Afanasyev V.I. “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math. 294 1 2016 1–1210.1134/S0081543816060018Suche in Google Scholar

[3] Vatutin V. A. Branching processes and their applications, lekcionnye kursy NOC M: MIAN 8 2008 (in Russian)10.4213/book650Suche in Google Scholar

[4] Vatutin V. A. “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl. 60 1 2016 103-11910.1137/S0040585X97T987454Suche in Google Scholar

[5] Vatutin V. A. “A conditional functional limit theorem for decomposable branching processes with two types of particles”, Math. Notes 101 5 2017 778-78910.1134/S0001434617050030Suche in Google Scholar

[6] Vatutin V. A., Dyakonova E. E. “Decomposable branching processes with a fixed extinction moment”, Proc. Steklov Inst. Math. 290 1 2015 103-12410.1134/S0081543815060103Suche in Google Scholar

[7] Vatutin V. A., Dyakonova E. E. “Extinction of decomposable branching processes”, Discrete Math. Appl. 26 3 2016 183-19210.1515/dma-2016-0016Suche in Google Scholar

[8] Vatutin V. A., Dyakonova E. E. “How many families live long?”, Theory Probab. Appl. 61 4 2016 709-732 (in Russian)10.1137/S0040585X97T988381Suche in Google Scholar

[9] Dyakonova E. E. “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl. 22 5-6 2012 639-66410.1515/dma-2012-044Suche in Google Scholar

[10] Zubkov A. M. “A condition for the extinction of a bounded branching process”, Math. Notes 8 1 1970 472-47710.1007/BF01093437Suche in Google Scholar

[11] Zubkov A. M. “A degeneracy condition for bounded continuous-time branching processes”, Theory Probab. Appl. 17 2 1973 284-29710.1137/1117032Suche in Google Scholar

[12] Sevast’yanov B. A. Verzweigungsprozesse, Mathematische Lehrbucher und Monographien. II. Abteilung: Mathematische Monographien, Band 34 Akademie-Verlag, Berlin 1974Suche in Google Scholar

[13] Sevast’yanov B. A., Zubkov A. M. “Controlled branching processes”, Theory Probab. Appl. 19 1 1974 14-2410.1137/1119002Suche in Google Scholar

[14] Athreya K.B., Ney P.E. Branching processes Berlin: Springer-Verlag 1972 287 pp10.1007/978-3-642-65371-1Suche in Google Scholar

[15] von Bahr B., Esseen C.G. “Inequalities for the rth absolute moment of a sum of random variables”, Ann. Math. Statist. 36 1 1965 299-30310.1214/aoms/1177700291Suche in Google Scholar

[16] Chu W., Li W.V., Ren Y.-X. “Small value probabilities for supercritical branching processes with immigration”, Bernoulli 20 1 2014 377-39310.3150/12-BEJ490Suche in Google Scholar

Received: 2017-02-17
Published Online: 2018-10-26
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0025/html?lang=de
Button zum nach oben scrollen