Startseite On groups containing the additive group of the residue ring or the vector space
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On groups containing the additive group of the residue ring or the vector space

  • Boris A. Pogorelov und Marina A. Pudovkina EMAIL logo
Veröffentlicht/Copyright: 16. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Groups which are most frequently used as key addition groups in iterative block ciphers include the regular permutation representation Vn+ of the group of vector key addition, the regular permutation representation Z2n+ of the additive group of the residue ring, and the regular permutation representation Z2n+1 of the multiplicative group of a prime field (in the case where 2n + 1 is a prime number). In this work we consider the extension of the group Gn generated by Vn+ and Z2n+ by means of transformations and groups which naturally arise in cryptographic applications. Examples of such transformations and groups are the groups Z2d+×Vnd+andVnd+×Z2d+ and pseudoinversion over the field GF(2n) or over the Galois ring GR(2md, 2m).


Originally published in Diskretnaya Matematika (2016) 28, №4, 100–121 (in Russian).


References

[1] Pogorelov B. A., Foundations of the theory of permutation groups. Part 1. General issues, Moscow, 1986 (in Russian), 316 pp.Suche in Google Scholar

[2] Dixon J.D., Mortimer B., Permutation groups, New York: Springer-Verlag, 1996, 346 pp.10.1007/978-1-4612-0731-3Suche in Google Scholar

[3] Pogorelov B. A., Pudovkina M. A., “Overgroups of order 2n additive regular groups of a residue ring and of a vector space”, Discrete Math. Appl., 26:4 (2016), 239–254.10.1515/dma-2016-0021Suche in Google Scholar

[4] Pogorelov B. A., Pudovkina M. A., “Orbital derivatives over subgroups and their combinatorial and group-theoretic properties”, Discrete Math. Appl., 26:5 (2016), 279–298.10.1515/dma-2016-0026Suche in Google Scholar

[5] Pogorelov B. A., Pudovkina M. A., “On the distance from permutations to imprimitive groups for a fixed system of imprimitivity”, Discrete Math. Appl., 24:2 (2014), 95–108.10.1515/dma-2014-0010Suche in Google Scholar

[6] Discrete mathematics. Encyclopaedia, M.:Nauchnoe izdatel’stvo “Bol’shaya Rossiyskaya entsiklopediya”, 2004 (in Russian).Suche in Google Scholar

[7] Glukhov M.M., Zubov A.Yu., “On the lengths of symmetric and alternating permutation groups in different basis (survey)”, Matematicheskie voprosy kibernetiki, 1999, №8, 5 – 32 (in Russian).Suche in Google Scholar

[8] Glukhov M.M., Kruglov I.A., Pichkur A.B., Cheremushkin A.V., Introduction to the number-theoretic methods of cryptography, SPb.: Lan’, 2011 (in Russian), 400 pp.Suche in Google Scholar

[9] Pogorelov B. A., “Primitive permutation group that contain a 2m-cycle”, Algebra and Logic, 19:2 (1980), 147–155.10.1007/BF01669840Suche in Google Scholar

[10] Elizarov V.P., Finite rings, M.: Gelios ARV, 2006 (in Russian), 304 pp.Suche in Google Scholar

Received: 2016-10-28
Published Online: 2018-08-16
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0021/html?lang=de
Button zum nach oben scrollen