Startseite Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process

  • Andrey M. Zubkov EMAIL logo und Maksim P. Savelov
Veröffentlicht/Copyright: 7. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is shown that, with suitable time change, the finite-dimensional distributions of the process formed by successive values of the Pearson statistics for an expanding sample converge to finite-dimensional distributions of the stationary random process, namely, the normalized square of the Bessel process. The results obtained earlier on the limit joint distributions of the Pearson statistics are used to derive explicit formulas for the density of joint distributions of the Bessel process.


Originally published in Diskretnaya Matematika (2016) 28, №3, 49–58 (in Russian).


References

[1] Zakharov V. K., Sarmanov O. V., Sevast’yanov B. A., “Sequential χ2 criteria”, Math. USSR-Sb., 8:3 (1969), 419–435.10.1070/SM1969v008n03ABEH002040Suche in Google Scholar

[2] Selivanov B. I., Chistyakov V. P., “Multivariate chi-square distribution for non-homogeneous polynomial scheme”, Discrete Math. Appl., 8:3 (1998), 263–273.10.1515/dma.1998.8.3.263Suche in Google Scholar

[3] Ronzhin A. F., “The limit distribution for a chi-square process with disorder”, Theory Probab. Appl., 29:3 (1985), 613–617.10.1137/1129084Suche in Google Scholar

[4] Germogenov A. P., Ronzhin A. F., “A sequential chi-square test”, Theory Probab. Appl., 29:2 (1985), 397–403.10.1137/1129052Suche in Google Scholar

[5] Tumanyan S. Kh., “Asymptotic distribution of the χ2 criterion when the number of observations and number of groups increase simultaneously”, Theory Probab. Appl., 1:1 (1956), 117–131.10.1137/1101010Suche in Google Scholar

[6] Borovkov A. A., Mathematical statistics, Gordon and Breach, 1998, 592 pp.Suche in Google Scholar

[7] Lebedev N. N., Special Functions & Their Applications, Courier Corporation, 2012, 308 pp.Suche in Google Scholar

[8] Watson G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922.Suche in Google Scholar

[9] Cramer H., Mathematical Methods of Statistics, Princeton Math. Ser., Uppsala: Almqvist & Wiksells, 1945, 575 pp.Suche in Google Scholar

Received: 2016-6-24
Published Online: 2017-12-7
Published in Print: 2017-12-20

© 2017 Walter de Gruyter GmbH Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0041/pdf?lang=de
Button zum nach oben scrollen