Startseite Estimating the level of affinity of a quadratic form
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Estimating the level of affinity of a quadratic form

  • Aleksandr V. Cheremushkin EMAIL logo
Veröffentlicht/Copyright: 7. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The level of affinity of a Boolean function is defined as the minimum number of variables such that assigning any particular values to these variables makes the function affine. The generalized level of affinity is defined as the minimum number of linear combinations of variables the values of which may be specified in such a way that the function becomes affine. For a quadratic form of rank 2r the generalized level of affinity is equal to r. We present some properties of the distribution of the rank of the random quadratic form and, as a corollary, derive an asymptotic estimate for the generalized level of affinity of quadratic forms.


Originally published in Diskretnaya Matematika (2017) 29, №1, 114–125 (in Russian).


References

[1] Dixon L. E., Linear groups with an expositions of the Galois field theory, B. J. Teubner, Leipzig, 1901, 312 pp.Suche in Google Scholar

[2] Dieudonne J., La geometrie des groupes classiques, Springer-Verlag, Berlin, 1955.Suche in Google Scholar

[3] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II, North-Holland, Amsterdam, 1977.Suche in Google Scholar

[4] Ryazanov B. V., Checheta S. I., “On the approximation of a random Boolean function by the set of quadratic forms”, Discrete Math. Appl., 5:5 (1995), 473–489.10.1515/dma.1995.5.5.473Suche in Google Scholar

[5] Buryakov M. L., “Asymptotic bounds for the affinity level for almost all Boolean functions”, DiscreteMath. Appl., 18:5 (2008), 545–551.10.1515/DMA.2008.039Suche in Google Scholar

Received: 2016-5-19
Published Online: 2017-12-7
Published in Print: 2017-12-20

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0035/html?lang=de
Button zum nach oben scrollen