Startseite Steganographic capacity for one-dimensional Markov cover
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Steganographic capacity for one-dimensional Markov cover

  • Valeriy A. Voloshko EMAIL logo
Veröffentlicht/Copyright: 16. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For shift-invariant probability measures on the set of infinite two-sided binary sequences (one-dimensional covers) we introduce the notion of capacity as a maximum portion of embedded into the cover uniformly distributed (purely random) binary sequence (message) that admits special correction of the cover restoring its distribution up to distribution of n-tuples (subwords of some fixed length n). “Special correction” is carried out using the proposed new algorithm that changes some of the cover’s symbols not occupied by embedded message. The features of the introduced capacity are examined for the Markov cover. In particular, we show how capacity may be significantly increased by weakening of the standard constraint that positions for message embedding have to be chosen by independent unfair coin tosses. Experimental results are presented for correction of real steganographic covers after LSB-embedding.


Originally published in Diskretnaya Matematika (2016) 28, №1, 19-43 (in Russian).


Acknowledgment

The author is grateful to Yu. S. Kharin for posing the problem and for valuable discussions, and to A. M. Zubkov for useful comments and advices when finalizing the article.

References

[1] Wang Y., Moulin P., “Perfectly secure steganography: capacity, error exponents, and code constructions”, IEEE Trans. Inf. Forensics and Sec., 54:6 (2008), 2706-2722.10.1109/TIT.2008.921684Suche in Google Scholar

[2] Harmsen J. J., Pearlman W. A., “Capacity of steganographic channels”, IEEE Trans. Inf. Theory, 55 (2009), 1775-1792.10.1145/1073170.1073175Suche in Google Scholar

[3] Filler T., Ker A. D., Fridrich J., “The Square root law of steganographic capacity for Markov covers”, Media Forensics and Security XI, Proc. SPIE, 7254, San Jose, 2009, 0801-0811.10.1117/12.805911Suche in Google Scholar

[4] Laskar S. A., Hemachandran K., “High capacity data hiding using LSB steganography and encryption”, Int. J. Database Management Systems, 4:6 (2012), 57-68.10.5121/ijdms.2012.4605Suche in Google Scholar

[5] Kharin Yu. S., Vecherko E. V., “Statistical estimation of parameters for binary Markov chain models with embeddings”, Discrete Math. Appl, 23:2 (2013), 153-169.10.1515/dma-2013-009Suche in Google Scholar

[6] Ponomarev K. I., “A parametric model of embedding and its statistical analysis”, Discrete Math. Appl., 19:6 (2009), 587-596.10.1515/DMA.2009.039Suche in Google Scholar

[7] Kaimanovich V. A., Vershik A. M., “Random walks on discrete groups: boundary and entropy”, The Annals of Probability, 11:3 (1983), 457-490.10.1214/aop/1176993497Suche in Google Scholar

[8] Chazottes J. R., Gambaudo J. M., Hochman M., Ugalde E., “On the finite-dimensional marginals of shift-invariant measures”, Ergodic Theory and Dynamical Systems, 32:5 (2012), 1485-1500.10.1017/S0143385711000526Suche in Google Scholar

[9] Prasolov V. V., Polynomials, M.: MCCME, 2001 (in Russian), 335 pp.Suche in Google Scholar

Received: 2016-2-17
Published Online: 2017-8-16
Published in Print: 2017-8-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0026/pdf?lang=de
Button zum nach oben scrollen