Startseite Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method

  • Oleg V. Kamlovskiy EMAIL logo
Veröffentlicht/Copyright: 16. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A general approach is proposed for obtaining estimates of the number of solutions of systems of nonlinear equations. Final estimates are established in the case when the arguments of functions in the system are the signs of linear recurrent sequences over Galois rings.


Originally published in Diskretnaya Matematika (2016) 28, №2, 27-43 (in Russian).


References

[1] Alferov A.P., Zubov A.Yu., Kuz’min A.S., Cheremushkin A.S.Foundations of Cryptography, M.: Gelios ARV, 2001 (in Russian), 480 pp.Suche in Google Scholar

[2] Rueppel R.A., Analysis and design of stream ciphers, Springer-Verlag, Belrin, 1986, 244 pp.10.1007/978-3-642-82865-2Suche in Google Scholar

[3] Korobov N.M., “Distribution of nonresidues and primitive roots in recursive series”, Dokl. Akad. Nauk SSSR, 88:4 (1953), 603-606 (in Russian).Suche in Google Scholar

[4] Nechaev V. I., “Distribution of signs in a sequence of rectangular matrices over a finite field”, Proc. Steklov Inst. Math., 218 (1997), 332-339.Suche in Google Scholar

[5] Niederreiter H., “Distribution properties of feedback shift register sequences”, Probl. Control and Inform. Theory, 15:1 (1986), 19-34.Suche in Google Scholar

[6] Shparlinskiy I.E., “On distribution of values of recurrence sequences”, Problems Inform. Transmission, 25:2 (1989), 120-125.Suche in Google Scholar

[7] Sidel’nikov V.M., “Estimates for the number of appearances of elements on an interval of a recurrent sequence over a finite field”, Discrete Math. Appl., 2:5 (1992), 473-481.10.1515/dma.1992.2.5.473Suche in Google Scholar

[8] Kamlovskiy O. V., “The number of appearences of elements in output sequences of filter generators”, Prikladnaya diskr. matematika, 2013, №(21), 11-25 (in Russian).10.17223/20710410/21/2Suche in Google Scholar

[9] Kumar P.V., Helleseth T., Calderbank A.R., “An upper bound for Weil exponential sums over Galois rings and applications”, IEEE Trans. Inform. Theory, 41:2 (1995), 456-468.10.1109/18.370147Suche in Google Scholar

[10] Shanbhag A.G., Kumar P.V., Helleseth T., “Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some q-ary sequences”, IEEE Trans. Inform. Theory, 42:1 (1996), 250-254.10.1109/18.481796Suche in Google Scholar

[11] Kamlovskiy O. V., Kuzmin A. S., “Bounds for the number of appearances of elements in linear reccurrent sequences over Galois rings”, Fundam. i prikl. matematika, 6:4 (2000), 1083-1094 (in Russian).Suche in Google Scholar

[12] Kamlovskiy O. V., “Frequency characteristics of linear recurrence sequences over Galois rings”, Sb. Math., 200:4 (2009), 499-519.10.1070/SM2009v200n04ABEH004006Suche in Google Scholar

[13] Fan S., Han W., “Random properties of the highest level sequences of primitive sequences over ℤ2l”, IEEE Trans. Inf. Theory, 49:6 (2003), 1553-1557.10.1109/TIT.2003.811916Suche in Google Scholar

[14] Lahtonen J., Ling S., Sole P., Zinoviev D., “ℤ8-Kerdock codes and pseudorandom binary sequences”, J. Complexity, 20:8 (2004), 318-330.10.1016/j.jco.2003.08.014Suche in Google Scholar

[15] Sole P., Zinoviev D., “Distribution of r-patterns in the most significant bit of a maximum length sequence over ℤ2l”, Lect. Notes Comput. Sci., 3486 (2005), 275-281.10.1007/11423461_20Suche in Google Scholar

[16] Hu H., Feng D., Wu W., “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from ℤ2l”, IEEE Trans. Inf. Theory, 52:5 (2006), 2260-2265.10.1109/TIT.2006.872850Suche in Google Scholar

[17] Sole P., Zinoviev D. The most significant bit of maximum-length sequences over ℤ2l: autocorrelation and imbalance. IEEE Trans. Inf. Theory. V. 50. № 8. 2006. P. 1844-184610.1109/TIT.2004.831858Suche in Google Scholar

[18] Kamlovskiy O. V., “The method of trigonometric sums for investigating the frequencies of r-grams in higher coordinate sequences of linear recurrences over ring ℤ2n”, Matematicheskie Voprosy Kriptografii, 1:4 (2010), 33-62 (in Russian).Suche in Google Scholar

[19] Lidl R., Niederreiter H., “Finite fields”, Encyclopedia of Mathematics and its Applications, 20, Addison-Wesley, 1987, 755 pp.10.1017/CBO9780511525926Suche in Google Scholar

[20] Solodovnikov V. I., “Bent functions from a finite abelian group into a finite abelian group”, Discrete Math. Appl., 12:2 (2002), 111-126.10.1515/dma-2002-0203Suche in Google Scholar

[21] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra: Textbook. Vol. 2, M.: Gelios ARV, 2003 (in Russian), 416 pp.Suche in Google Scholar

[22] Logachev O.A., Sal’nikov A.A., Yashchenko V.V., Boolean functions in the coding theory and cryptology, M.: MCCME, 2004 (in Russian), 470 pp.Suche in Google Scholar

[23] Golomb S.W., Gong G., Signal design for good correlation, New York, 2005, 438 pp.10.1017/CBO9780511546907Suche in Google Scholar

[24] Nechaev A. A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365-384.10.1515/dma.1991.1.4.365Suche in Google Scholar

[25] McDonald B.R., Finite rings with identity, Dekker, New York, 1974, 429 pp.Suche in Google Scholar

[26] Nechaev A. A., “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283-311.10.1070/SM1994v078n02ABEH003470Suche in Google Scholar

[27] Kamlovskiy O. V., “Frequency characteristics of coordinate sequences of linear recurrences over Galois rings”, Izv. Math., 77:6 (2013), 1130-1154.10.1070/IM2013v077n06ABEH002672Suche in Google Scholar

Received: 2015-8-7
Published Online: 2017-8-16
Published in Print: 2017-8-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0022/pdf?lang=de
Button zum nach oben scrollen