Startseite On asymptotics of branching processes with immigration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On asymptotics of branching processes with immigration

  • Yakubdzhan M. Khusanbaev EMAIL logo
Veröffentlicht/Copyright: 27. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider a sequence of almost critical branching processes with immigration supposing that the immigration process is weakly stationary. The rate of growth and asymptotic properties of fluctuations of such branching processes are investigated.


Originally published in Diskretnaya Matematika (2016) 28, №1, 113–122 (in Russian).


Award Identifier / Grant number: 16-01-00226-a

Funding statement: This work was supported by the Russian Foundation for Basic Research, grant nos. 16-01-00226-a and 16-01-00470-a).

References

[1] Athreya K.B., Ney P.E., Branching Processes, Springer-Verlag, New York, 1972, 288 pp.10.1007/978-3-642-65371-1Suche in Google Scholar

[2] Seneta E., “An explicit-limit theorem for the critical Galton-Watson process with Immigration”, J. Roy. Stat. Soc., 32 (1970), 149–152.10.1111/j.2517-6161.1970.tb00826.xSuche in Google Scholar

[3] Wei C.Z., Winicki J., “Some asymptotic results for the branching process with immigration”, Stoch. Process. Appl., 31 (1989), 261–282.10.1016/0304-4149(89)90092-6Suche in Google Scholar

[4] Rakhimov I., “Functional limit theorems for critical processes with immigration”, Adv. Appl. Probab., 39 (2007), 1054–1069.10.1239/aap/1198177239Suche in Google Scholar

[5] Khusanbaev Ya. M., “On the asymptotical behavior of a subcritical branching process with immigration”, Ukr. Math. J., 65:6 (2013), 928–937.10.1007/s11253-013-0829-zSuche in Google Scholar

[6] Nagaev S. V., “A limit theorem for branching processes with immigration”, Theory Probab. Appl., 20:1 (1975), 176–179.10.1137/1120019Suche in Google Scholar

[7] Sriram T.N., “Invalidity of bootstrap for critical branching process with immigration”, Ann. Statist., 22 (1994), 1013–1023.10.1214/aos/1176325509Suche in Google Scholar

[8] Ispany M., Pap G. and Van Zuijlen M.C.A., “Fluctuation limit of branching processes with immigration and estimation of the mean”, Adv. Appl. Probab., 37 (2005), 523–528.10.1239/aap/1118858637Suche in Google Scholar

[9] Khusanbaev Ya. M., “Almost critical branching processes and limit theorems”, Ukr. Math. J., 61:1 (2009), 154–163.10.1007/s11253-009-0191-3Suche in Google Scholar

[10] Billingsley P., Convergence of probability measures, 2, Wiley, 1968, 253 pp.Suche in Google Scholar

[11] Shiryaev A. N., “Probability”, Graduate Texts in Mathematics, 95, 2, Springer-Verlag, New York, 1996, 624 pp.10.1007/978-1-4757-2539-1Suche in Google Scholar

[12] Sirajdinov S.Kh., Formanov Sh.K., Limit theorems for sums of random vectors linked into aMarkov chain, Tashkent: FAN, 1979 (in Russian), 171 pp.Suche in Google Scholar

[13] Khusanbaev Ya. M., “On the convergence rate in one limit theorem for branching processes with immigration”, Siberian Math. J., 55:1 (2014), 178–184.10.1134/S0037446614010200Suche in Google Scholar

[14] Asadullin M. Kh., Nagaev S. V., “Limit theorems for a critical branching process with immigration”,Math. Notes, 32:4 (1982), 750–757.10.1007/BF01152384Suche in Google Scholar

[15] Badalbaev I. S., Zubkov A. M., “Limit theorems for a sequence of branching processes with immigration”, Theory Probab. Appl., 28:2 (1984), 404–409.10.1137/1128034Suche in Google Scholar

Received: 2015-5-11
Published Online: 2017-4-27
Published in Print: 2017-4-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0009/html?lang=de
Button zum nach oben scrollen