Startseite On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates

  • Dmitry V. Zakablukov EMAIL logo
Veröffentlicht/Copyright: 22. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper is concerned with the problem of complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. For a reversible circuit implementing a map f:Z2nZ2n we define the Shannon complexity function L(n, q) as a function of n and the number q of additional inputs in the circuit. We prove the lower estimate L(n,q)2n(n2)3log2(n+q)n3 for the complexity of a reversible circuit and derive the upper estimate L(n, 0) ⩽ 48n2n(1 + o(1)) / log2n if there are no additional inputs. The asymptotic upper estimate for the complexity is shown to be L(n, q0) ≲ 2n with q0n2no(n) additional inputs.


Originally published in Diskretnaya Matematika (2016) 28, №2, 12–26 (in Russian).


References

[1] Shannon C. E., “The synthesis of two-terminal switching circuits”, Bell System Tech. J., 28:8 (1949), 59–98.10.1002/j.1538-7305.1949.tb03624.xSuche in Google Scholar

[2] Yablonsky S.V., Introduction to Discrete Mathematics, Mir Publishers, Moscow, 2003 (in Russian), 384 pp.Suche in Google Scholar

[3] Karpova N. A., “On calculations with limited memory”, Matematicheskie voprosy kibernetiki, 2 (1989), 131-144 (in Russian).Suche in Google Scholar

[4] Feynman R., “Quantum Mechanical Computers”, Optic News, 11:2 (1985), 11–20.10.1364/CLEO.1984.TUAA2Suche in Google Scholar

[5] Maslov D. A., Reversible Logic Synthesis, Ph. D. Thesis, Univ. New Brunswick, 2003, 165 pp.Suche in Google Scholar

[6] Zakablukov D. V., “Reducing the gate complexity of reversible circuits without the using of tables of equivalent replacements gates compositions”, Nauka i obrazovanie. MGTU im. N. E. Baumana. Elektron. zhurn., 2014, №3 (in Russian).10.7463/0314.0699195Suche in Google Scholar

[7] Shende V. V., Prasad A. K., Markov I. L., Hayes J. P., “Synthesis of Reversible Logic Circuits”, IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst., 22:6 (2006), 710–722.10.1109/TCAD.2003.811448Suche in Google Scholar

[8] Zakablukov D. V., Zhukov A. E., “The research of schemes of reversible logic elements”, Informatika i sistemy upravleniya v XXI veke, Sbornik trudov №9 molodykh uchenykh, aspirantov i studentov, MGTU im. N. E. Baumana, Moscow, 2012, 148–157 (in Russian).Suche in Google Scholar

[9] Zakablukov D. V., “Fast algorithm for synthesis of reversible circuits based on the permutation groups theory”, Prikladnaya diskretnaya matematika, 2014, №2, 101–109 (in Russian).10.17223/20710410/24/9Suche in Google Scholar

[10] Glukhov M. M., Zubov A. Yu., “On the length of the symmetric and alternating permutations groups in different bases (review)”, Matematicheskie voprosy kibernetiki, 8, Nauka, M., 1999, 5–32 (in Russian).Suche in Google Scholar

Received: 2014-4-24
Published Online: 2017-3-22
Published in Print: 2017-2-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0007/html?lang=de
Button zum nach oben scrollen