Startseite Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Orbital derivatives over subgroups and their combinatorial and group-theoretic properties

  • Boris A Pogorelov EMAIL logo und Marina A Pudovkina
Veröffentlicht/Copyright: 14. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Properties of the orbital derivatives over subgroups of the group Gn generated by the additive groups of the residue ring đ•«2n and the n-dimensional vector space Vn over the field GF(2) are considered. Nonrefinable sequences of nested orbits for the subgroups of the group Gn and of the Sylow subgroup Pn of the symmetric group S2n are described. For the orbital derivatives, three analogs of the concept of the degree of nonlinearity for functions over đ•«2n or Vn are suggested.

References

[1] Discrete mathematics. Encyclopaedia., M.: Nauchnoe izdatel’stvo «Bol’shaya Rossiyskaya entsiklopediya», 2004 (in Russian).Suche in Google Scholar

[2] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Elsevier, 2009, 232 pp.10.1016/B978-0-12-374890-4.00009-4Suche in Google Scholar

[3] Pogorelov B. A., Pudovkina M. A., “Orbital derivatives on residue rings. Part I. General properties”, Mat. Vopr. Kriptogr., 5:4 (2014), 99-127 (in Russian).10.4213/mvk137Suche in Google Scholar

[4] Pogorelov B. A., Pudovkina M. A., “Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties”, Mat. Vopr. Kriptogr., 6:1 (2015), 117-133 (in Russian).10.4213/mvk154Suche in Google Scholar

[5] Pogorelov B. A., Pudovkina M. A., “Orbital derivatives and supergroups of regular additive groups”, Mat. Vopr. Kriptogr., 2016 (to appear) (in Russian).Suche in Google Scholar

[6] Sachkov V. N., Introduction to the combinatorial methods of discrete mathematics, M: MCCME, 2004 (in Russian).Suche in Google Scholar

[7] Cheremushkin A. V., “The additive approach to the determination of the nonlinear degree of a discrete function”, Prikl. Diskr. Mat., 2010, No.2, 22-33 (in Russian).10.17223/20710410/8/4Suche in Google Scholar

[8] Cheremushkin A. V., “The additive approach to the determination of the nonlinear degree of a discrete function on cyclic group of prime order”, Prikl. Diskr. Mat., 2013,.2, 26-38 (in Russian).10.17223/20710410/20/4Suche in Google Scholar

[9] Cheremushkin A. V., “Computation of the degree of a nonlinear function on cyclic group of prime order”, Prikl. Diskr. Mat., 2014,.2, 37-47 (in Russian).10.17223/20710410/24/4Suche in Google Scholar

Received: 2014-12-26
Published Online: 2016-11-14
Published in Print: 2016-10-1

© 2016 Diogenes Co., Sofia

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2016-0026/pdf?lang=de
Button zum nach oben scrollen