Home A new kind of Durrmeyer-Stancu-type operators
Article Open Access

A new kind of Durrmeyer-Stancu-type operators

  • Qing-Bo Cai , Şule Yüksel Güngör EMAIL logo and Bayram Çekim
Published/Copyright: July 31, 2025
Become an author with De Gruyter Brill

Abstract

The objective of this study is to examine a class of positive linear operators, defined in terms of the b ψ , k λ , μ basis and to analyze their approximation properties. Direct estimates for the ( λ , μ ) -Durrmeyer-Stancu-type operators are obtained using the first modulus of continuity and in a certain Lipschitz-type space. Approximation properties of these operators in Lebesgue spaces are also given. Finally, illustrative graphics are provided to support the results and to compare the rate of convergence.

MSC 2010: 41A10; 41A25; 41A35; 41A36

1 Introduction

Bernstein polynomials, a fundamental concept in Korovkin-type approximation theory, were introduced by Bernstein [1] as a means of proving the Weierstrass theorem in 1912, as follows:

B ψ ( h ; ξ ) = ψ k = 0 b ψ , k ( ξ ) h k ψ , ξ [ 0 , 1 ] ,

where ψ N , h C [ 0 , 1 ] , and b ψ , k ( ξ ) = ψ k ξ k ( 1 ξ ) ψ k are Bernstein basis functions.

The theorem proposed by Weierstrass suggests that a continuous function can be uniformly approximated by a sequence of polynomials. Nevertheless, the question of the degree of approximation represents a distinct issue in itself. Consequently, numerous mathematicians have presented sequences of positive linear operators, with the objective of achieving a better degree of approximation over a specified interval.

In 1967, Durrmeyer [2] proposed a modification of Bernstein polynomials, whereby each function that is integrable on the interval [ 0 , 1 ] is associated with a polynomial as follows:

D ψ ( h ; ξ ) = ( ψ + 1 ) ψ k = 0 b ψ , k ( ξ ) 1 0 h ( t ) b ψ , k ( t ) d t , ξ [ 0 , 1 ] .

In 1969, Stancu [3] presented a sequence of positive linear operators as follows:

S ψ α , β ( h ; ξ ) = ψ k = 0 b ψ , k ( ξ ) h k + α ψ + β , ξ [ 0 , 1 ] ,

where ψ N , h C [ 0 , 1 ] , and 0 α β .

Ye et al. [4] devised a novel type of Bézier curve basis functions with a single shape parameter λ . They also constructed a convenient algorithm for curve modeling based on these basis functions:

(1) b ψ , 0 ( λ ; ξ ) = b ψ , 0 ( ξ ) λ ψ + 1 b ψ + 1 , 1 ( ξ ) , b ψ , k ( λ ; ξ ) = b ψ , k ( ξ ) + λ ψ 2 k + 1 ψ 2 1 b ψ + 1 , k ( ξ ) ψ 2 k 1 ψ 2 1 b ψ + 1 , k + 1 ( ξ ) , 1 k ψ 1 , b ψ , ψ ( λ ; ξ ) = b ψ , ψ ( ξ ) λ ψ + 1 b ψ + 1 , ψ ( ξ ) ,

where λ [ 1 , 1 ] .

Later, Cai et al. [5] presented the novel λ -Bernstein operators with shape parameter λ [ 1 , 1 ] ,

B ψ , λ ( h ; ξ ) = ψ k = 0 b ψ , k ( λ ; ξ ) h k ψ , ξ [ 0 , 1 ] ,

where b ψ , k ( λ ; ξ )   ( k = 0 , 1 , , ψ ) are the Bézier basis functions featuring a single shape parameter λ defined in (1). The approximation properties of various positive linear operators were investigated by different authors with the aid of λ -Bézier basis [611].

In [12], the Durrmeyer variant of λ -Bernstein-type operators is defined as

D ψ , λ ( h ; ξ ) = ( ψ + 1 ) ψ k = 0 b ψ , k ( λ ; ξ ) 1 0 b ψ , k ( t ) h ( t ) d t , ξ [ 0 , 1 ]

for h C [ 0 , 1 ] .

Subsequently, in a very recent study, Zhou and Cai [13] introduced the concept of a Bézier basis with λ and μ parameters as follows:

(2) b ψ , k λ , μ ( ξ ) = b ψ , k ( ξ ) + Λ k b ψ + 1 , k ( ξ ) Λ k + 1 b ψ + 1 , k + 1 ( ξ ) , k = 0 , 1 , , ψ ,

where Λ k is defined by

Λ 0 = Λ ψ + 1 = 0 , Λ k = ( 1 μ ) ψ 2 k + 1 2 ( ψ 2 1 ) + ( 1 + μ ) λ 2 ( ψ + 1 ) , k = 1 , , ψ ,

with λ [ 1 , 1 ] and 1 μ ψ . For μ = 1 and λ = ψ 2 k + 1 ψ 1 λ , λ [ 1 , 1 ] , k = 1 , , ψ , these basis reduce to λ -Bézier basis defined in (1). The authors undertook an investigation of the Korovkin-type theorem and introduced a local approximation theorem for the generalized λ -Bernstein operators. They also considered Lipschitz continuous functions and based on their results, derived an asymptotic formula of the Voronovskaja-type. Subsequently, Cai et al. [14] presented the Stancu variant of generalized λ -Bernstein operators via ( λ , μ ) -Bézier basis for 0 α β , h C [0, 1] as follows:

R ψ , α , β λ , μ ( h ; ξ ) = ψ k = 0 b ψ , k λ , μ ( ξ ) h k + α ψ + β , ξ [ 0 , 1 ] .

Cai and Guorong [15] defined ( λ , μ ) -Bernstein-Durrmeyer operators for h C [ 0 , 1 ] as

D ψ λ , μ ( h ; ξ ) = ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 1 0 b ψ , k ( u ) h ( u ) d u , ξ [ 0 , 1 ] ,

where b ψ , k λ , μ are ( λ , μ ) -Bézier basis defined in (2). In the present study, we introduce ( λ , μ ) -Durrmeyer-Stancu-type operators as:

(3) ψ , α , β λ , μ ( h ; ξ ) = ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β d u ,

where 0 α β and b ψ , k λ , μ ( ξ ) are ( λ , μ ) -Bézier basis defined in (2). Note that the case ψ = 1 can only occur if μ = 1 , since 1 μ ψ .

2 Auxiliary results

This section gives lemmas for proving the main theorems.

Lemma 1

For the operators ψ , α , β λ , μ , we have

ψ , α , β λ , μ ( 1 ; ξ ) = 1 , ψ , α , β λ , μ ( u ; ξ ) = ψ ψ + β ξ + 1 2 ξ ψ + 2 + ( 1 μ ) 1 2 ξ + ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ 1 ) ( ψ + 2 ) + ( 1 + μ ) λ 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ + 1 ) ( ψ + 2 ) + α ψ + β , ψ , α , β λ , μ ( u 2 ; ξ ) = ψ 2 ( ψ + β ) 2 ξ 2 + 4 ξ 6 ξ 2 ψ + 3 + 6 ξ 2 8 ξ + 2 ( ψ + 2 ) ( ψ + 3 ) + ( 1 μ ) ξ 2 ξ 2 + ξ ψ + 1 ( ψ + 2 ) ( ψ + 3 ) + 1 2 ξ 2 ξ 2 + 3 ξ ψ + 1 ( 1 ξ ) ψ + 1 ( ψ 1 ) ( ψ + 2 ) ( ψ + 3 ) + ( 1 + μ ) λ ξ ξ ψ + 1 ( ψ + 2 ) ( ψ + 3 ) + 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 ( ψ + 1 ) ( ψ + 2 ) ( ψ + 3 ) + 2 ψ α ( ψ + β ) 2 ξ + 1 2 ξ ψ + 2 + ( 1 μ ) 1 2 ξ + ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ 1 ) ( ψ + 2 ) + ( 1 + μ ) λ 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ + 1 ) ( ψ + 2 ) + α 2 ( ψ + β ) 2 .

Proof

The results can be achieved by using the definition of the operators ψ , α , β λ , μ and the beta function B ( n , k ) = 0 1 u n 1 ( 1 u ) k 1 d u , where n > 0 , k > 0 .□

Lemma 2

One can obtain the following central moments for ξ [ 0 , 1 ] :

ψ , α , β λ , μ ( u ξ ; ξ ) = ψ ψ + β 1 ξ + ψ ψ + β 1 2 ξ ψ + 2 + ( 1 μ ) 1 2 ξ + ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ 1 ) ( ψ + 2 ) + ( 1 + μ ) λ 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ + 1 ) ( ψ + 2 ) + α ψ + β , ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) = ψ 2 ( ψ + β ) 2 2 ψ ψ + β + 1 ξ 2 + ψ 2 ( ψ + β ) 2 4 ξ 6 ξ 2 ψ + 3 + 6 ξ 2 8 ξ + 2 ( ψ + 2 ) ( ψ + 3 ) + ( 1 μ ) ξ 2 ξ 2 + ξ ψ + 1 ( ψ + 2 ) ( ψ + 3 ) + 1 2 ξ 2 ξ 2 + 3 ξ ψ + 1 ( 1 ξ ) ψ + 1 ( ψ 1 ) ( ψ + 2 ) ( ψ + 3 ) + ( 1 + μ ) λ ξ ξ ψ + 1 ( ψ + 2 ) ( ψ + 3 ) + 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 ( ψ + 1 ) ( ψ + 2 ) ( ψ + 3 ) + 2 ψ α ( ψ + β ) 2 2 α ψ + β 2 ψ ψ + β 1 2 ξ ψ + 2 + ( 1 μ ) 1 2 ξ + ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ 1 ) ( ψ + 2 ) + ( 1 + μ ) λ 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ + 1 ) ( ψ + 2 ) ξ + 2 ψ α ( ψ + β ) 2 1 2 ξ ψ + 2 + ( 1 μ ) 1 2 ξ + ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ 1 ) ( ψ + 2 ) + ( 1 + μ ) λ 1 ξ ψ + 1 ( 1 ξ ) ψ + 1 2 ( ψ + 1 ) ( ψ + 2 ) + α 2 ( ψ + β ) 2 .

Proof

By employing the linearity of the operators ψ , α , β λ , μ and utilizing the results of Lemma 1, we are able to successfully derive the central moments.□

Let C [ 0 , 1 ] express the space of all continuous functions defined on [ 0 , 1 ] , which has the norm

h C [ 0 , 1 ] max ξ [ 0 , 1 ] h ( ξ ) .

Theorem 1

Let h C [0, 1]. Then, we have

lim ψ ψ , α , β λ , μ ( h ) h C [ 0 , 1 ] = 0 .

Proof

We have lim ψ ψ , α , β λ , μ ( e i ; ξ ) = e i ( ξ ) , i { 0 , 1 , 2 } , uniformly on [ 0 , 1 ] from Lemma 1, where e i ( ξ ) = ξ i , i { 0 , 1 , 2 } . By Korovkin theorem [16], we obtain the desired result.□

Lemma 3

For each h C [ 0 , 1 ] , we have

ψ , α , β λ , μ ( h ; . ) h C [ 0 , 1 ]

for the operators ψ , α , β λ , μ .

Proof

From Lemma 1, we have

ψ , α , β λ , μ ( h ; ξ ) = ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β d u ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β d u h C [ 0 , 1 ] ψ , α , β λ , μ ( 1 ; ξ ) = h C [ 0 , 1 ] ,

which completes the proof.□

3 ψ , α , β λ , μ operators and their fundamental estimates

Direct approximation results are given in this section for the operators ψ , α , β λ , μ defined in (3).

Theorem 2

For the operators ψ , α , β λ , μ and h C [ 0 , 1 ] , we have

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) 2 ω ( h , δ ψ 1 2 ) ,

where

δ = δ ψ 1 2 = ( ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) ) 1 2

given by Lemma 2 and ω ( h , δ ) is the usual modulus of continuity defined by the formula ω ( h , δ ) = sup u ξ δ u , ξ [ 0 , 1 ] h ( u ) h ( ξ ) .

Proof

From the definition and the properties of ω ( h , δ ) , we obtain

h ( u ) h ( ξ ) ω ( h , u ξ ) 1 + u ξ δ ω ( h , δ ) .

By applying ψ , α , β λ , μ operators, we obtain

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) 1 + ψ , α , β λ , μ ( u ξ ; ξ ) δ ω ( h , δ )

and via Cauchy-Schwarz inequality and Lemma 2, we obtain

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) 1 + [ ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) ] 1 2 δ ω ( h , δ ) 1 + δ ψ 1 2 δ ω ( h , δ ) ,

where

δ = δ ψ 1 2 = ( ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) ) 1 2 ,

which completes the proof.□

Now, we can examine an approximation result with the help of the following function space:

Lip M ( ς ) = { h C [ 0 , 1 ] : h ( r ) h ( t ) M r t ς ; r , t [ 0 , 1 ] } ,

where M is any positive number and 0 < ς 1 .

Theorem 3

For any h Lip M ( ς ) and ς ( 0 , 1 ] , we have

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) M ( ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) ) ς 2 .

Proof

Since ψ , α , β λ , μ are positive linear operators and h Lip M ( ς ) ,

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) ψ , α , β λ , μ ( h ( u ) h ( ξ ) ; ξ ) ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β h ( ξ ) d u M ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ ς d u .

By taking p = 1 ς and q = 1 1 ς , and employing Hölder’s inequality, we obtain

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) M ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ d u ς ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) d u 1 ς = M ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ d u ς ( ψ λ , μ ( 1 ; ξ ) ) 1 ς = M ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ d u ς .

Finally, by Cauchy-Schwarz inequality, we obtain

ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) M ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ 2 d u ς 2 = M ( ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) ) ς 2 ,

which gives the desired result.□

4 L p approximation

In this section, L p approximation is given, as well as the rate of convergence, by the ψ , α , β λ , μ operators.

Theorem 4

Let h L p [ 0 , 1 ] , for 1 p < . Then, we have

lim ψ ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] = 0 .

Here, L p [ 0 , 1 ] , 1 p < , denotes the space of measurable real-valued pth power Lebesgue integrable functions h on [ 0 , 1 ] with the norm h L p [ 0 , 1 ] = 0 1 h ( ξ ) p d ξ 1 p .

Proof

From Lusin’s theorem, for a given ε > 0 , there exists g C [ 0 , 1 ] such that h g L p [ 0 , 1 ] < ε . On the other hand, by using Theorem 1, for a given ε > 0 , there exists ψ 0 N such that

ψ , α , β λ , μ ( g ) g C [ 0 , 1 ] < ε

for ψ > ψ 0 . We also have

(4) ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] ψ , α , β λ , μ ( h ) ψ , α , β λ , μ ( g ) L p [ 0 , 1 ] + ψ , α , β λ , μ ( g ) g C [ 0 , 1 ] + h g L p [ 0 , 1 ] .

Now, we show that there exists a C > 0 such that ψ , α , β λ , μ C , for any ψ N . Here ψ , α , β λ , μ denotes the operator norm of ψ , α , β λ , μ , which are defined from L p [ 0 , 1 ] to L p [ 0 , 1 ] . For this purpose, from Jensen’s inequality [17], we obtain

ψ , α , β λ , μ ( h ; ξ ) p = ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β d u p ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β d u p ψ k = 0 b ψ , k λ , μ ( ξ ) ( ψ + 1 ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β d u p ψ k = 0 b ψ , k λ , μ ( ξ ) ( ψ + 1 ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β p d u .

Now, we have

0 1 ψ , α , β λ , μ ( h ; ξ ) p d ξ 0 1 ψ k = 0 b ψ , k λ , μ ( ξ ) ( ψ + 1 ) 0 1 b ψ , k ( u ) h ψ u + α ψ + β p d u d ξ ψ k = 0 ( ψ + 1 ) 0 1 b ψ , k λ , μ ( ξ ) d ξ 0 1 b ψ , k ( u ) h ψ u + α ψ + β p d u .

We can calculate 0 1 b ψ , k λ , μ ( ξ ) d ξ by using the definition of b ψ , k λ , μ ( ξ ) , k = 0 , 1 , , ψ , given by (2) and using the beta function as follows:

( ψ + 1 ) 0 1 b ψ , k λ , μ ( ξ ) d ξ = ( ψ + 1 ) 0 1 ψ k ξ k ( 1 ξ ) ψ k d ξ + ( ψ + 1 ) 0 1 ( 1 μ ) ψ 2 k + 1 2 ( ψ 2 1 ) + ( 1 + μ ) λ 2 ( ψ + 1 ) ψ + 1 k ξ k ( 1 ξ ) ψ + 1 k d ξ

( ψ + 1 ) 0 1 ( 1 μ ) ψ 2 k 1 2 ( ψ 2 1 ) + ( 1 + μ ) λ 2 ( ψ + 1 ) ψ + 1 k + 1 ξ k + 1 ( 1 ξ ) ψ k d ξ = 1 + ( 1 μ ) ψ 2 k + 1 2 ( ψ 2 1 ) + ( 1 + μ ) λ 2 ( ψ + 1 ) ψ + 1 ψ + 2 ( 1 μ ) ψ 2 k 1 2 ( ψ 2 1 ) + ( 1 + μ ) λ 2 ( ψ + 1 ) ψ + 1 ψ + 2 1 + ( 1 μ ) 1 ( ψ + 2 ) ( ψ 1 ) 1 .

Thus, we obtain

0 1 ψ , α , β λ , μ ( h ; ξ ) p d ξ ψ k = 0 0 1 b ψ , k ( u ) h ψ u + α ψ + β p d u 0 1 h ψ u + α ψ + β p d u .

Now, if we use the substitution ψ u + α ψ + β = y , we can write

0 1 h ψ u + α ψ + β p d u = ψ + β ψ α ψ + β ψ + α ψ + β h ( y ) p d y .

Hence, we have

0 1 ψ , α , β λ , μ ( h ; ξ ) p d ξ ψ + β ψ h L p [ 0 , 1 ] p .

If we consider the above inequality, we obtain

0 1 ψ , α , β λ , μ ( h ; ξ ) p d ξ ( 1 + β ) h L p [ 0 , 1 ] p .

In view of this expression, we can write

ψ , α , β λ , μ L p [ 0 , 1 ] ( 1 + β ) 1 p h L p [ 0 , 1 ] M 1 p h L p [ 0 , 1 ] = C h L p [ 0 , 1 ] .

On the other hand, we obtain

ψ , α , β λ , μ ( h ) ψ , α , β λ , μ ( g ) L p [ 0 , 1 ] = ψ , α , β λ , μ ( h g ) L p [ 0 , 1 ] ψ , α , β λ , μ h g L p [ 0 , 1 ] .

We obtain, taking into account (4)

ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] C h g L p [ 0 , 1 ] + ε + h g L p [ 0 , 1 ] ( C + 2 ) ε ,

with the help of this expression, we find the desired result.□

The integral modulus of continuity, which is given for h L p ( Ω ) ( 1 p < ), is defined by

ω 1 , p ( h , t ) sup 0 < δ t h ( + δ ) h ( ) L p ( Ω δ ) ,

where L p ( Ω δ ) indicates that the L p norm is to be taken over the interval Ω δ = [ 0 , 1 δ ] [18]. Consider the space

W p 1 ( Ω ) { h L p ( Ω ) : h is absolutely continuous, h L p ( Ω ) } .

In the following, we will recall the Peetre’s K -functional, which is defined for h L p ( Ω ) ( 1 p < ) [19]:

K p ( h , t ) inf g W p 1 ( Ω ) ( h g L p ( Ω ) + t g L p ( Ω ) ) .

The relationship between the integral modulus of continuity and the Peetre K -functional is

c 1 ω 1 , p ( h , t ) K p ( h , t ) c 2 ω 1 , p ( h , t ) .

Here c 1 > 0 and c 2 > 0 are constants that are independent of h and p [20].

Lemma 4

For each g W p 1 [ 0 , 1 ] , p > 1 , we have

ψ , α , β λ , μ ( g ) g L p [ 0 , 1 ] σ ψ , α , β λ , μ B p g L p [ 0 , 1 ] ,

where σ ψ , α , β λ , μ = max ξ [ 0 , 1 ] ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) and B p is a positive constant independent of g and ψ .

Proof

Using the definition of ψ , α , β λ , μ and by Lemma 1, we have

ψ , α , β λ , μ ( g ; ξ ) g ( ξ ) = ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) g ψ u + α ψ + β g ( ξ ) d u ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ξ ψ u + α ψ + β g ( t ) d t d u Θ g ( ξ ) ( ψ + 1 ) ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ d u ,

where

Θ g ( ξ ) = sup 0 t 1 ξ t 1 t ξ ξ t g ( t ) d t

is the Hardy-Littlewood majorant of g [21]. Now, by using Cauchy-Schwarz’s inequality, we obtain

ψ , α , β λ , μ ( g ; ξ ) g ( ξ ) Θ g ( ξ ) ( ψ + 1 ) 1 2 ψ k = 0 b ψ , k λ , μ ( ξ ) 1 2 ψ k = 0 b ψ , k λ , μ ( ξ ) 0 1 b ψ , k ( u ) ψ u + α ψ + β ξ 2 d u 1 2 Θ g ( ξ ) max ξ [ 0 , 1 ] ψ , α , β λ , μ ( ( u ξ ) 2 ; ξ ) .

Applying Hardy-Littlewood’s theorem [21], we obtain

0 1 Θ g p ( ξ ) d ξ 2 p p 1 p 0 1 g ( ξ ) p d ξ , p > 1 .

Thus, for p > 1 , we obtain

ψ , α , β λ , μ ( g ) g L p [ 0 , 1 ] σ ψ , α , β λ , μ 2 1 p p p 1 g L p [ 0 , 1 ] ,

which completes the proof.□

Theorem 5

Let h L p [ 0 , 1 ] , p > 1 . Then, we have

ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] N ω 1 , p ( h , σ ψ , α , β λ , μ ) ,

where σ ψ , α , β λ , μ is defined as in Lemma 4.

Proof

From Theorem 4, we have ψ , α , β λ , μ C . Together with Lemma 4, we obtain

(5) ψ , α , β λ , μ ( f ) f L p [ 0 , 1 ] ( C + 1 ) f L p [ 0 , 1 ] if f L p [ 0 , 1 ] , σ ψ , α , β λ , μ B p f L p [ 0 , 1 ] if f W p 1 [ 0 , 1 ] .

Using (5) and the linearity of the operators ψ , α , β λ , μ , for g W p 1 [ 0 , 1 ] , we can write

ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] ψ , α , β λ , μ ( h g ) ( h g ) L p [ 0 , 1 ] + ψ , α , β λ , μ ( g ) g L p [ 0 , 1 ] ( C + 1 ) h g L p [ 0 , 1 ] + σ ψ , α , β λ , μ B p C + 1 g L p [ 0 , 1 ] .

Since the left-hand side of the above inequality does not depend on the function g , the following result holds

ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] ( C + 1 ) K p h , σ ψ , α , β λ , μ B p C + 1 .

Using the equivalence between Peetre’s K -functional and the integral modulus of continuity, we obtain

ψ , α , β λ , μ ( h ) h L p [ 0 , 1 ] ( C + 1 ) c 2 ω 1 , p h , σ ψ , α , β λ , μ B p C + 1 ( C + 1 ) c 2 1 + B p C + 1 ω 1 , p ( h , σ ψ , α , β λ , μ ) N ω 1 , p ( h , σ ψ , α , β λ , μ ) ,

where N = ( C + 1 ) c 2 1 + B p C + 1 is a positive constant independent of h and ψ . Hence, we obtain the desired result.□

5 Examples

This section presents a series of illustrative examples, both graphical and numerical, which shows the convergence of operators when applied to certain functions.

Example 1

The convergence of the n , α , β λ , μ ( h ; x ) operators to the function h ( x ) = 1 cos ( 4 e x ) is given in Figure 1 for λ = 1 , μ = 5 , α = 0.2 , and β = 1 and n = 10 , n = 20 , and n = 50 . The convergence improves for increasing values of n .

Figure 1 
               Approximation of the operators 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                                 ,
                                 μ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda ,\mu }(h;\hspace{0.33em}x)
                     
                   to 
                     
                        
                        
                           h
                           
                              (
                              
                                 x
                              
                              )
                           
                           =
                           1
                           −
                           cos
                           
                              (
                              
                                 4
                                 
                                    
                                       e
                                    
                                    
                                       x
                                    
                                 
                              
                              )
                           
                        
                        h\left(x)=1-\cos (4{e}^{x})
                     
                   for 
                     
                        
                        
                           n
                           =
                           10
                        
                        n=10
                     
                  , 
                     
                        
                        
                           n
                           =
                           20
                        
                        n=20
                     
                   and 
                     
                        
                        
                           n
                           =
                           50
                        
                        n=50
                     
                  , and 
                     
                        
                        
                           λ
                           =
                           −
                           1
                        
                        \lambda =-1
                     
                  , 
                     
                        
                        
                           μ
                           =
                           5
                        
                        \mu =5
                     
                  , 
                     
                        
                        
                           α
                           =
                           0.2
                        
                        \alpha =0.2
                     
                  , and 
                     
                        
                        
                           β
                           =
                           1
                        
                        \beta =1
                     
                  .
Figure 1

Approximation of the operators n , α , β λ , μ ( h ; x ) to h ( x ) = 1 cos ( 4 e x ) for n = 10 , n = 20 and n = 50 , and λ = 1 , μ = 5 , α = 0.2 , and β = 1 .

Example 2

The convergence of the n , α , β λ , μ ( h ; x ) operators to h ( x ) = 1 cos ( 4 e x ) is given in Figure 2 for n = 20 , μ = 16 , α = 0.1 , and β = 0.1 . Here λ = 1 , λ = 0 , and λ = 1 . It can be seen how the change in λ affects the approximation in some subintervals of [ 0 , 1 ] .

Figure 2 
               Approximation of the operators 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                                 ,
                                 μ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda ,\mu }(h;\hspace{0.33em}x)
                     
                   to 
                     
                        
                        
                           h
                           
                              (
                              
                                 x
                              
                              )
                           
                           =
                           1
                           −
                           cos
                           
                              (
                              
                                 4
                                 
                                    
                                       e
                                    
                                    
                                       x
                                    
                                 
                              
                              )
                           
                        
                        h\left(x)=1-\cos (4{e}^{x})
                     
                   for 
                     
                        
                        
                           λ
                           =
                           1
                        
                        \lambda =1
                     
                  , 
                     
                        
                        
                           λ
                           =
                           0
                        
                        \lambda =0
                     
                  , and 
                     
                        
                        
                           λ
                           =
                           −
                           1
                        
                        \lambda =-1
                     
                   and 
                     
                        
                        
                           n
                           =
                           20
                        
                        n=20
                     
                  , 
                     
                        
                        
                           μ
                           =
                           16
                        
                        \mu =16
                     
                  , 
                     
                        
                        
                           α
                           =
                           0.1
                           ,
                        
                        \alpha =0.1,
                     
                   and 
                     
                        
                        
                           β
                           =
                           0.1
                        
                        \beta =0.1
                     
                  .
Figure 2

Approximation of the operators n , α , β λ , μ ( h ; x ) to h ( x ) = 1 cos ( 4 e x ) for λ = 1 , λ = 0 , and λ = 1 and n = 20 , μ = 16 , α = 0.1 , and β = 0.1 .

Example 3

The convergence of the n , α , β λ , μ ( h ; x ) operators to h ( x ) = 1 cos ( 4 e x ) is given in Figure 3 for n = 20 , λ = 1 , α = 0.1 , and β = 0.1 . Here μ = 1 , μ = 8 , and μ = 16 . It can be seen how the change in μ affects the approximation in some subintervals of [ 0 , 1 ] .

Figure 3 
               Approximation of the operators 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                                 ,
                                 μ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda ,\mu }(h;\hspace{0.33em}x)
                     
                   to 
                     
                        
                        
                           h
                           
                              (
                              
                                 x
                              
                              )
                           
                           =
                           1
                           −
                           cos
                           
                              (
                              
                                 4
                                 
                                    
                                       e
                                    
                                    
                                       x
                                    
                                 
                              
                              )
                           
                        
                        h\left(x)=1-\cos (4{e}^{x})
                     
                   for 
                     
                        
                        
                           μ
                           =
                           1
                        
                        \mu =1
                     
                  , 
                     
                        
                        
                           μ
                           =
                           8
                        
                        \mu =8
                     
                  , and 
                     
                        
                        
                           μ
                           =
                           16
                        
                        \mu =16
                     
                   and 
                     
                        
                        
                           n
                           =
                           20
                        
                        n=20
                     
                  , 
                     
                        
                        
                           λ
                           =
                           1
                        
                        \lambda =1
                     
                  , 
                     
                        
                        
                           α
                           =
                           0.1
                        
                        \alpha =0.1
                     
                  , and 
                     
                        
                        
                           β
                           =
                           0.1
                        
                        \beta =0.1
                     
                  .
Figure 3

Approximation of the operators n , α , β λ , μ ( h ; x ) to h ( x ) = 1 cos ( 4 e x ) for μ = 1 , μ = 8 , and μ = 16 and n = 20 , λ = 1 , α = 0.1 , and β = 0.1 .

Example 4

Approximation error curves of three different operators n , α , β λ , μ ( h ; x ) , n , α , β λ ( h ; x ) , and n , α , β ( h ; x ) to h ( x ) = 1 cos ( 4 e x ) is given in Figure 4 for n = 10 , α = 0.2 , β = 1 , λ = 1 , and μ = 8 . It is seen that for some x values, n , α , β λ , μ ( h ; x ) operators have a better approximation.

Figure 4 
               Approximation of the operators 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                                 ,
                                 μ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda ,\mu }(h;\hspace{0.33em}x)
                     
                  , 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda }(h;\hspace{0.33em}x)
                     
                  , and 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }(h;\hspace{0.33em}x)
                     
                   to the function 
                     
                        
                        
                           h
                           
                              (
                              
                                 x
                              
                              )
                           
                           =
                           1
                           −
                           cos
                           
                              (
                              
                                 4
                                 
                                    
                                       e
                                    
                                    
                                       x
                                    
                                 
                              
                              )
                           
                        
                        h\left(x)=1-\cos (4{e}^{x})
                     
                   for 
                     
                        
                        
                           n
                           =
                           10
                        
                        n=10
                     
                  , 
                     
                        
                        
                           α
                           =
                           0.2
                        
                        \alpha =0.2
                     
                  , 
                     
                        
                        
                           β
                           =
                           1
                        
                        \beta =1
                     
                  , 
                     
                        
                        
                           λ
                           =
                           1
                        
                        \lambda =1
                     
                  , and 
                     
                        
                        
                           μ
                           =
                           8
                        
                        \mu =8
                     
                  .
Figure 4

Approximation of the operators n , α , β λ , μ ( h ; x ) , n , α , β λ ( h ; x ) , and n , α , β ( h ; x ) to the function h ( x ) = 1 cos ( 4 e x ) for n = 10 , α = 0.2 , β = 1 , λ = 1 , and μ = 8 .

Example 5

Approximation error curves of three different operators n , α , β λ , μ ( h ; x ) , n , α , β λ ( h ; x ) , and n , α , β ( h ; x ) to h ( x ) = ( x 0.5 ) sin ( π x ) are given in Figure 5 for n = 10 , α = 0.2 , β = 1 , λ = 1 , and μ = 8 . It is seen that for some x values, n , α , β λ , μ ( h ; x ) operators have a better approximation.

Figure 5 
               Approximation of the operators 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                                 ,
                                 μ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda ,\mu }(h;\hspace{0.33em}x)
                     
                  , 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                              
                                 λ
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }^{\lambda }(h;\hspace{0.33em}x)
                     
                  , and 
                     
                        
                        
                           
                              
                                 ℒ
                              
                              
                                 n
                                 ,
                                 α
                                 ,
                                 β
                              
                           
                           
                              (
                              
                                 h
                                 ;
                                 
                                 x
                              
                              )
                           
                        
                        {{\mathcal{ {\mathcal L} }}}_{n,\alpha ,\beta }(h;\hspace{0.33em}x)
                     
                   to the function 
                     
                        
                        
                           h
                           
                              (
                              
                                 x
                              
                              )
                           
                           =
                           
                              (
                              
                                 x
                                 −
                                 0.5
                              
                              )
                           
                           s
                           i
                           n
                           
                              (
                              
                                 π
                                 x
                              
                              )
                           
                        
                        h\left(x)=(x-0.5)sin(\pi x)
                     
                   for 
                     
                        
                        
                           n
                           =
                           10
                        
                        n=10
                     
                  , 
                     
                        
                        
                           α
                           =
                           0.2
                        
                        \alpha =0.2
                     
                  , 
                     
                        
                        
                           β
                           =
                           1
                        
                        \beta =1
                     
                  , 
                     
                        
                        
                           λ
                           =
                           1
                        
                        \lambda =1
                     
                  , and 
                     
                        
                        
                           μ
                           =
                           8
                        
                        \mu =8
                     
                  .
Figure 5

Approximation of the operators n , α , β λ , μ ( h ; x ) , n , α , β λ ( h ; x ) , and n , α , β ( h ; x ) to the function h ( x ) = ( x 0.5 ) s i n ( π x ) for n = 10 , α = 0.2 , β = 1 , λ = 1 , and μ = 8 .

Example 6

Let h ( ξ ) = 1 cos ( 4 e ξ ) . Error tables of the effects of changes in λ , μ , and ψ on the error rate of ψ , α , β λ , μ operators are shown in Tables 1, 3, and 4; the error rate of ψ , α , β λ operators is shown in Table 2.

From Table 1, we see that the error estimate decreases for increasing values of λ and ψ for the ψ , α , β λ , μ operators.

From Table 2, we see that the error estimate decreases for increasing values of ψ and decreasing values of λ . Furthermore, for increasing values of λ , the error degree of ψ , α , β λ , μ operators is better than the error degree of ψ , α , β λ operators, as can be seen by comparing Tables 1 and 2.

From Table 3, we see that the error estimate decreases for decreasing values of μ and increasing values of ψ for ψ , α , β λ , μ operators.

From Table 4, we see that the error estimation for the operators ψ , α , β λ , μ improves when the values of the μ parameter are held constant and those of the λ parameter are increased.

Table 1

Error estimation of ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) for μ = 8 , α = 0.1 , β = 0.1 and for different values of ψ and λ

ψ , α , β λ , μ ( h ; ξ ) h ( ξ )
ψ = 20 ψ = 50 ψ = 100 ψ = 150 ψ = 200
λ = 1 0.4116736961 0.210008119 0.1160155398 0.08016855484 0.06124902593
λ = 0.5 0.4010977527 0.2077104664 0.115269711 0.07982265431 0.06105022084
λ = 0 0.3905218092 0.2055142121 0.1145238823 0.07947675379 0.06085141574
λ = 0.5 0.3813966027 0.2033179579 0.1138836775 0.07913085326 0.06065261065
λ = 1 0.383538422 0.2011217036 0.1132698351 0.07878495274 0.06045380556
Table 2

Error estimation of ψ , α , β λ ( h ; ξ ) h ( ξ ) for α = 0.1 , β = 0.1 and for different values of ψ and λ

ψ , α , β λ ( h ; ξ ) h ( ξ )
ψ = 20 ψ = 50 ψ = 100 ψ = 150 ψ = 200
λ = 1 0.3959896167 0.2068348246 0.115004127 0.07970437587 0.06098370424
λ = 0.5 0.3970831782 0.2070989471 0.1151001759 0.07974990029 0.06101016194
λ = 0 0.3981767397 0.2073630696 0.1151962249 0.07979542471 0.06103661964
λ = 0.5 0.3992703012 0.2076271921 0.1152922738 0.07984094913 0.06106307734
λ = 1 0.4003638627 0.2078913146 0.1153883227 0.07988647355 0.06108953504
Table 3

Error estimation of ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) for λ = 1 , α = 0.1 , β = 0.1 and for different values of ψ and μ

ψ , α , β λ , μ ( h ; ξ ) h ( ξ )
ψ = 20 ψ = 50 ψ = 100 ψ = 150 ψ = 200
μ = 1 0.402877159 0.2083391826 0.1155277043 0.07994915828 0.06112497746
μ = 5 0.4079037516 0.2092349186 0.1158064674 0.08007452774 0.0611958623
μ = 10 0.4141869924 0.210541627 0.1161549214 0.08023123957 0.06128446835
μ = 15 0.4204702332 0.2118753968 0.1165033753 0.0803879514 0.0613730744
μ = 20 0.4270425711 0.2132091667 0.1168518292 0.08054466322 0.06146168045
Table 4

Error estimation of ψ , α , β λ , μ ( h ; ξ ) h ( ξ ) for ψ = 100 , α = 0.1 , β = 0.1 and for different values of λ and μ

ψ , α , β λ , μ ( h ; ξ ) h ( ξ )
λ = 1 λ = 0.5 λ = 0 λ = 0.5 λ = 1
μ = 1 0.1155277043 0.1153619646 0.1151962249 0.1150304851 0.1148647454
μ = 5 0.1158064674 0.1153092483 0.1148120291 0.1143283093 0.113919081
μ = 10 0.1161549214 0.1152433529 0.1143375081 0.1135872563 0.1128370044
μ = 15 0.1165033753 0.1151774575 0.1139374786 0.1128462032 0.1117549279
μ = 20 0.1168518292 0.1151115621 0.1135374492 0.1121051502 0.1106728513

Acknowledgments

This work is supported by Fujian Provincial Natural Science Foundation of China (Grant No. 2024J01792).

  1. Funding information: This work is supported by Fujian Provincial Natural Science Foundation of China (Grant No. 2024J01792).

  2. Author contributions: All authors contributed to the study conception and design. All authors have read and approved the final version of the manuscript for publication.

  3. Conflict of interest: The authors report having no conflicts of interest.

References

[1] S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Kharkov Math. Soc. 13 (1912), 1–2. Search in Google Scholar

[2] J. L. Durrmeyer, Une formule dainversion de la transformée de Laplace: Application à la théorie des moments, Thése de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967. Search in Google Scholar

[3] D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Stud. Univ. Babeş-Bolyai Ser. Math.-Phys. 14 (1969), 31–45. Search in Google Scholar

[4] Z. Ye, X. Long, and X. M. Zeng, Adjustment algorithms for Bezier curve and surface, in: International Conference on Computer Science and Education, 2010, pp. 1712–1716, DOI: http://dx.doi.org/10.1109/ICCSE.2010.5593563. 10.1109/ICCSE.2010.5593563Search in Google Scholar

[5] Q. B. Cai, B. Y. Lian, and G. Zhou, Approximation properties of λ -Bernstein operators, J. Inequal. Appl. 2018 (2018), no. 1, 61, DOI: https://doi.org/10.1186/s13660-018-1653-7. 10.1186/s13660-018-1653-7Search in Google Scholar PubMed PubMed Central

[6] Q. B. Cai and R. Aslan, On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry 13 (2021), 1919, DOI: https://doi.org/10.3390/sym13101919. 10.3390/sym13101919Search in Google Scholar

[7] K. J. Ansari and F. Usta, A generalization of Szász-Mirakyan operators based on α non-negative parameter, Symmetry 14 (2022), 1596, DOI: https://doi.org/10.3390/sym14081596. 10.3390/sym14081596Search in Google Scholar

[8] S. A. Mohiuddine and F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), 70, DOI: https://doi.org/10.1007/s13398-020-00802-w. 10.1007/s13398-020-00802-wSearch in Google Scholar

[9] F. Özger, Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators, Filomat 33 (2019), 3473–3486, DOI: https://doi.org/10.2298/FIL1911473O. 10.2298/FIL1911473OSearch in Google Scholar

[10] R. Aslan and M. Mursaleen, Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal. 16 (2022), 445–462, DOI: https://doi.org/10.7153/jmi-2022-16-32. 10.7153/jmi-2022-16-32Search in Google Scholar

[11] Q. B. Cai, The Bézier variant of Kantorovich type λ-Bernstein operators, J. Inequal. Appl. 2018 (2018), 90, DOI: https://doi.org/10.1186/s13660-018-1688-9. 10.1186/s13660-018-1688-9Search in Google Scholar PubMed PubMed Central

[12] V. A. Radu, P. N. Agrawal, and J. K. Singh, Better numerical approximation by λ-Durrmeyer-Bernstein type operators, Filomat 35 (2021), 1405–1419, DOI: https://doi.org/10.2298/FIL2104405R. 10.2298/FIL2104405RSearch in Google Scholar

[13] G. Zhou and Q. B. Cai, Approximation properties of generalized λ-Bernstein operators, Open Math. (In Review). Search in Google Scholar

[14] Q. B. Cai, R. Aslan, F. Özger, and H. M. Srivastava, Approximation by a new Stancu variant of generalized (λ,μ)- Bernstein operators, Alex. Eng. J. 107 (2024), 205–214, DOI: https://doi.org/10.1016/j.aej.2024.07.015. 10.1016/j.aej.2024.07.015Search in Google Scholar

[15] Q. B. Cai and Z. Guorong, Approximation properties of (λ,μ)-Bernstein-Durrmeyer operators, Math. Methods Appl. Sci. 48 (2024), no. 5, 5946–5953, DOI: https://doi.org/10.1002/mma.10647. 10.1002/mma.10647Search in Google Scholar

[16] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin-New York, 1994. 10.1515/9783110884586Search in Google Scholar

[17] F. Altomare, Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory 5 (2010), 92–164. Search in Google Scholar

[18] E. Quak, Lp-error estimates for positive linear operators using the second-order τ-modulus, Anal. Math. 14 (1988), 259–272. 10.1007/BF01906850Search in Google Scholar

[19] M. W. Müller, Approximation by Cheney-Sharma-Kantorovich polynomials in the Lp-metric, Rocky Mountain J. Math. 19 (1989), no. 1, 281–291. 10.1216/RMJ-1989-19-1-281Search in Google Scholar

[20] H. Johnen, Inequalities connected with the moduli of smoothness, Mat. Vesnik 9 (1972), no. 24, 289–303. Search in Google Scholar

[21] A. Zygmund, Trigonometric Series I, II, Cambridge University Press, New York, 1959. Search in Google Scholar

Received: 2024-11-08
Revised: 2025-03-29
Accepted: 2025-04-28
Published Online: 2025-07-31

© 2025 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. On approximation by Stancu variant of Bernstein-Durrmeyer-type operators in movable compact disks
  3. Circular n,m-rung orthopair fuzzy sets and their applications in multicriteria decision-making
  4. Grand Triebel-Lizorkin-Morrey spaces
  5. Coefficient estimates and Fekete-Szegö problem for some classes of univalent functions generalized to a complex order
  6. Proofs of two conjectures involving sums of normalized Narayana numbers
  7. On the Laguerre polynomial approximation errors and lower type of entire functions of irregular growth
  8. New convolutions for the Hartley integral transform imbedded in the Banach algebras and convolution-type integral equations
  9. Some inequalities for rational function with prescribed poles and restricted zeros
  10. Lucas difference sequence spaces defined by Orlicz function in 2-normed spaces
  11. Evaluating the efficacy of fuzzy Bayesian networks for financial risk assessment
  12. Fixed point results for contractions of polynomial type
  13. Estimation for spatial semi-functional partial linear regression model with missing response at random
  14. Investigating the controllability of differential systems with nonlinear fractional delays, characterized by the order 0 < η ≤ 1 < ζ ≤ 2
  15. New forms of bilateral inequalities for K-g-frames
  16. Rate of pole detection using Padé approximants to polynomial expansions
  17. Existence results for nonhomogeneous Choquard equation involving p-biharmonic operator and critical growth
  18. Note on the shape-preservation of a new class of Kantorovich-type operators via divided differences
  19. Geršhgorin-type theorems for Z1-eigenvalues of tensors with applications
  20. New topologies derived from the old one via operators
  21. Blow up solutions for two-dimensional semilinear elliptic problem of Liouville type with nonlinear gradient terms
  22. Infinitely many normalized solutions for Schrödinger equations with local sublinear nonlinearity
  23. Nonparametric expectile shortfall regression for functional data
  24. Advancing analytical solutions: Novel wave insights and methodologies for beta fractional Kuralay-II equations
  25. A generalized p-Laplacian problem with parameters
  26. A study of solutions for several classes of systems of complex nonlinear partial differential difference equations in ℂ2
  27. Towards finding equalities involving mixed products of the Moore-Penrose and group inverses by matrix rank methodology
  28. ω -biprojective and ω ¯ -contractible Banach algebras
  29. Coefficient functionals for Sakaguchi-type-Starlike functions subordinated to the three-leaf function
  30. Solutions of several general quadratic partial differential-difference equations in ℂ2
  31. Inequalities for the generalized trigonometric functions with respect to weighted power mean
  32. Optimization of Lagrange problem with higher-order differential inclusion and special boundary-value conditions
  33. Hankel determinants for q-starlike functions connected with q-sine function
  34. System of partial differential hemivariational inequalities involving nonlocal boundary conditions
  35. A new family of multivalent functions defined by certain forms of the quantum integral operator
  36. A matrix approach to compare BLUEs under a linear regression model and its two competing restricted models with applications
  37. Weighted composition operators on bicomplex Lorentz spaces with their characterization and properties
  38. Behavior of spatial curves under different transformations in Euclidean 4-space
  39. Commutators for the maximal and sharp functions with weighted Lipschitz functions on weighted Morrey spaces
  40. A new kind of Durrmeyer-Stancu-type operators
  41. A study of generalized Mittag-Leffler-type function of arbitrary order
  42. On the approximation of Kantorovich-type Szàsz-Charlier operators
  43. Split quaternion Fourier transforms for two-dimensional real invariant field
  44. Review Article
  45. Characterization generalized derivations of tensor products of nonassociative algebras
  46. Special Issue on Differential Equations and Numerical Analysis - Part II
  47. Existence and optimal control of Hilfer fractional evolution equations
  48. Persistence of a unique periodic wave train in convecting shallow water fluid
  49. Existence results for critical growth Kohn-Laplace equations with jumping nonlinearities
  50. Monotonicity and oscillation for fractional differential equations with Riemann-Liouville derivatives
  51. Nontrivial solutions for a generalized poly-Laplacian system on finite graphs
  52. Stability and bifurcation analysis of a modified chemostat model
  53. Special Issue on Nonlinear Evolution Equations and Their Applications - Part II
  54. Analytic solutions of a generalized complex multi-dimensional system with fractional order
  55. Extraction of soliton solutions and Painlevé test for fractional Peyrard-Bishop DNA model
  56. Special Issue on Recent Developments in Fixed-Point Theory and Applications - Part II
  57. Some fixed point results with the vector degree of nondensifiability in generalized Banach spaces and application on coupled Caputo fractional delay differential equations
  58. On the sum form functional equation related to diversity index
  59. Special Issue on International E-Conference on Mathematical and Statistical Sciences - Part II
  60. Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions
  61. Converses of nabla Pachpatte-type dynamic inequalities on arbitrary time scales
  62. Special Issue on Blow-up Phenomena in Nonlinear Equations of Mathematical Physics - Part II
  63. Energy decay of a coupled system involving a biharmonic Schrödinger equation with an internal fractional damping
  64. Special Issue on Some Integral Inequalities, Integral Equations, and Applications - Part II
  65. Nonlinear heat equation with viscoelastic term: Global existence and blowup in finite time
  66. New Jensen's bounds for HA-convex mappings with applications to Shannon entropy
  67. Special Issue on Approximation Theory and Special Functions 2024 conference
  68. Ulam-type stability for Caputo-type fractional delay differential equations
  69. Faster approximation to multivariate functions by combined Bernstein-Taylor operators
  70. (λ, ψ)-Bernstein-Kantorovich operators
  71. Some special functions and cylindrical diffusion equation on α-time scale
  72. (q, p)-Mixing Bloch maps
  73. Orthogonalizing q-Bernoulli polynomials
  74. On better approximation order for the max-product Meyer-König and Zeller operator
  75. Moment-based approximation for a renewal reward process with generalized gamma-distributed interference of chance
  76. Special Issue on Variational Methods and Nonlinear PDEs
  77. A note on mean field type equations
  78. Ground states for fractional Kirchhoff double-phase problem with logarithmic nonlinearity
  79. Solution of nonlinear Langevin equations involving Hilfer-Hadamard fractional order derivatives and variable coefficients
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dema-2025-0132/html
Scroll to top button