Startseite Root numbers and parity of ranks of elliptic curves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Root numbers and parity of ranks of elliptic curves

  • Tim Dokchitser EMAIL logo und Vladimir Dokchitser
Veröffentlicht/Copyright: 23. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2011 Heft 658

Abstract

The purpose of the paper is to complete several global and local results concerning parity of ranks of elliptic curves. Primarily, we show that the Shafarevich–Tate conjecture implies the parity conjecture for all elliptic curves over number fields, we give a formula for local and global root numbers of elliptic curves and complete the proof of a conjecture of Kramer and Tunnell in characteristic 0. The method is to settle the outstanding local formulae by deforming from local fields to totally real number fields and then using global parity results.

Received: 2009-11-02
Revised: 2010-04-25
Published Online: 2011-03-23
Published in Print: 2011-September

© Walter de Gruyter Berlin · New York 2011

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle.2011.060/html
Button zum nach oben scrollen