Abstract
We study periodic wind-tree models, unbounded planar billiards with periodically located rectangular obstacles. For a class of rational parameters we show the existence of completely periodic directions, and recurrence; for another class of rational parameters, there are directions in which all trajectories escape, and we prove a rate of escape for almost all directions. These results extend to a dense Gδ of parameters.
Received: 2009-10-09
Revised: 2010-03-15
Published Online: 2011-03-15
Published in Print: 2011-July
© Walter de Gruyter Berlin · New York 2011
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- On invertibility of Sobolev mappings
- Curvature evolution of nonconvex lens-shaped domains
- Rigidity for Multi-Taub-NUT metrics
- Schubert calculus for algebraic cobordism
- The Newton stratification on deformations of local G-shtukas
- Nilpotent blocks of quasisimple groups for odd primes
- On Selberg's small eigenvalue conjecture and residual eigenvalues
- Finite dimensional morphisms in a tensor category
- The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion
Artikel in diesem Heft
- On invertibility of Sobolev mappings
- Curvature evolution of nonconvex lens-shaped domains
- Rigidity for Multi-Taub-NUT metrics
- Schubert calculus for algebraic cobordism
- The Newton stratification on deformations of local G-shtukas
- Nilpotent blocks of quasisimple groups for odd primes
- On Selberg's small eigenvalue conjecture and residual eigenvalues
- Finite dimensional morphisms in a tensor category
- The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion