Startseite Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents

  • Christopher Deninger
Veröffentlicht/Copyright: 20. Dezember 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2011 Heft 651

Abstract

For an ergodic measure preserving action on a probability space, consider the corresponding crossed product von Neumann algebra. We calculate the Fuglede–Kadison determinant for a class of operators in this von Neumann algebra in terms of the Ljapunov exponents of an associated measurable cocycle. The proof is based on recent work of Dykema and Schultz. As an application one obtains formulas for the Fuglede–Kadison determinant of noncommutative polynomials in the von Neumann algebra of the discrete Heisenberg group. These had been previously obtained by Lind and Schmidt via entropy considerations.

Received: 2008-10-08
Revised: 2009-09-01
Published Online: 2010-12-20
Published in Print: 2011-February

© Walter de Gruyter Berlin · New York 2011

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle.2011.012/html?lang=de
Button zum nach oben scrollen