Abstract
We give a new construction of 𝑝-adic heights on varieties over number fields using 𝑝-adic Arakelov theory. In analogy with Zhang’s construction of real-valued heights in terms of adelic metrics, these heights are given in terms of 𝑝-adic adelic metrics on line bundles. In particular, we describe a construction of canonical 𝑝-adic heights on abelian varieties and we show that we recover the canonical Mazur–Tate height and, for Jacobians, the height constructed by Coleman and Gross. Our main application is a new and simplified approach to the quadratic Chabauty method for the computation of rational points on certain curves over the rationals, by pulling back the canonical height on the Jacobian with respect to a carefully chosen line bundle. We show that our construction allows us to reprove, without using 𝑝-adic Hodge theory or arithmetic fundamental groups, several results due to Balakrishnan and Dogra. Our method also extends to primes 𝑝 of bad reduction. One consequence of our work is that, for any canonical height (𝑝-adic or ℝ-valued) on an abelian variety (and hence on pullbacks to other varieties), the local contribution at a finite prime 𝑞 can be constructed using 𝑞-analytic methods.
Funding source: Israel Science Foundation
Award Identifier / Grant number: 912/18
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: MU 4110/1-1
Funding source: Simons Foundation
Award Identifier / Grant number: 546235
Funding source: National Science Foundation
Award Identifier / Grant number: DMS 2401547
Funding statement: The first-named author was supported by grant no 912/18 from the Israel Science Foundation. The second-named author was supported by DFG grant MU 4110/1-1 and by an NWO Vidi grant. The third-named author was supported by Simons Foundation grant 546235 for the collaboration “Arithmetic Geometry, Number Theory, and Computation” and by NSF DMS 2401547. We would like to thank the NWO DIAMANT cluster for supporting a visit of the first- and third-named author to the University of Groningen.
Acknowledgements
We would like to thank Alexander Betts, Francesca Bianchi, Netan Dogra, Bas Edixhoven, Robin de Jong, Eric Katz and Klaus Künnemann for helpful discussions, and Pierre Colmez for comments on a first version of this paper. We thank the anonymous referees for particularly careful and useful reviews.
References
[1] L. H. A. Alpöge, Points on curves, Ph.D. Thesis, Princeton University, 2020. Search in Google Scholar
[2] N. Adžaga, V. Arul, L. Beneish, M. Chen, S. Chidambaram, T. Keller and B. Wen, Quadratic Chabauty for Atkin–Lehner quotients of modular curves of prime level and genus 4, 5, 6, Acta Arith. 208 (2023), no. 1, 15–49. 10.4064/aa220110-7-3Search in Google Scholar
[3] N. Adžaga, S. Chidambaram, T. Keller and O. Padurariu, Rational points on hyperelliptic Atkin–Lehner quotients of modular curves and their coverings, Res. Number Theory 8 (2022), no. 4, Paper No. 87. 10.1007/s40993-022-00388-9Search in Google Scholar
[4]
V. Arul and J. S. Müller,
Rational points on
[5] J. S. Balakrishnan, Iterated Coleman integration for hyperelliptic curves, ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Ser. 1, Mathematical Sciences Publisher, Berkeley (2013), 41–61. 10.2140/obs.2013.1.41Search in Google Scholar
[6] J. S. Balakrishnan, Coleman integration for even-degree models of hyperelliptic curves, LMS J. Comput. Math. 18 (2015), no. 1, 258–265. 10.1112/S1461157015000029Search in Google Scholar
[7] J. S. Balakrishnan and A. Besser, Computing local 𝑝-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 2012 (2012), no. 11, 2405–2444. 10.1093/imrn/rnr111Search in Google Scholar
[8] J. S. Balakrishnan and A. Besser, Coleman–Gross height pairings and the 𝑝-adic sigma function, J. reine angew. Math. 698 (2015), 89–104. 10.1515/crelle-2012-0095Search in Google Scholar
[9] J. S. Balakrishnan, A. Besser, F. Bianchi and J. S. Müller, Explicit quadratic Chabauty over number fields, Israel J. Math. 243 (2021), no. 1, 185–232. 10.1007/s11856-021-2158-5Search in Google Scholar
[10] J. S. Balakrishnan, A. Besser and J. S. Müller, Quadratic Chabauty: 𝑝-adic heights and integral points on hyperelliptic curves, J. reine angew. Math. 720 (2016), 51–79. 10.1515/crelle-2014-0048Search in Google Scholar
[11] J. S. Balakrishnan, A. Besser and J. S. Müller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), no. 305, 1403–1434. 10.1090/mcom/3130Search in Google Scholar
[12] J. S. Balakrishnan, A. J. Best, F. Bianchi, B. Lawrence, J S. Müller, N. Triantafillou and J. Vonk, Two recent 𝑝-adic approaches towards the (effective) Mordell conjecture, Arithmetic L-functions and differential geometric methods, Progr. Math. 338, Birkhäuser/Springer, Cham (2021), 31–74. 10.1007/978-3-030-65203-6_2Search in Google Scholar
[13] J. S. Balakrishnan, R. W. Bradshaw and K. S. Kedlaya, Explicit Coleman integration for hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci. 6197, Springer, Berlin (2010), 16–31. 10.1007/978-3-642-14518-6_6Search in Google Scholar
[14] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, I: 𝑝-adic heights, Duke Math. J. 167 (2018), no. 11, 1981–2038. 10.1215/00127094-2018-0013Search in Google Scholar
[15] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties, Int. Math. Res. Not. IMRN 2021 (2021), no. 15, 11923–12008. 10.1093/imrn/rnz362Search in Google Scholar
[16] J. S. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman and J. Vonk, Explicit Chabauty–Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885–944. 10.4007/annals.2019.189.3.6Search in Google Scholar
[17] J. S. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman and J. Vonk, Quadratic Chabauty for modular curves: Algorithms and examples, Compos. Math. 159 (2023), no. 6, 1111–1152. 10.1112/S0010437X23007170Search in Google Scholar
[18] J. S. Balakrishnan and J. Tuitman, Explicit Coleman integration for curves, Math. Comp. 89 (2020), no. 326, 2965–2984. 10.1090/mcom/3542Search in Google Scholar
[19] I. Barsotti, Factor sets and differentials on abelian varieties, Trans. Amer. Math. Soc. 84 (1957), 85–108. 10.1090/S0002-9947-1957-0083178-0Search in Google Scholar
[20] P. Berthelot, L. Breen and W. Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Math. 930, Springer, Berlin 1982. 10.1007/BFb0093025Search in Google Scholar
[21] A. Besser, Coleman integration using the Tannakian formalism, Math. Ann. 322 (2002), no. 1, 19–48. 10.1007/s002080100263Search in Google Scholar
[22] A. Besser, The 𝑝-adic height pairings of Coleman–Gross and of Nekovář, Number theory, CRM Proc. Lecture Notes 36, American Mathematical Society, Providence (2004), 13–25. 10.1090/crmp/036/02Search in Google Scholar
[23] A. Besser, 𝑝-adic Arakelov theory, J. Number Theory 111 (2005), no. 2, 318–371. 10.1016/j.jnt.2004.11.010Search in Google Scholar
[24] A. Besser, Heidelberg lectures on Coleman integration, The arithmetic of fundamental groups—PIA 2010, Contrib. Math. Comput. Sci. 2, Springer, Heidelberg (2012), 3–52. 10.1007/978-3-642-23905-2_1Search in Google Scholar
[25] A. Besser, 𝑝-adic heights and Vologodsky integration, J. Number Theory 239 (2022), 273–297. 10.1016/j.jnt.2021.12.005Search in Google Scholar
[26] A. Besser and S. L. Zerbes, Vologodsky integration on curves with semi-stable reduction, Israel J. Math. 253 (2023), no. 2, 761–770. 10.1007/s11856-022-2377-4Search in Google Scholar
[27] L. A. Betts, The motivic anabelian geometry of local heights on abelian varieties, Mem. Amer. Math. Soc. 302 (2024), no. 1518, 1–88. 10.1090/memo/1518Search in Google Scholar
[28] L. A. Betts and N. Dogra, The local theory of unipotent Kummer maps and refined Selmer schemes, preprint (2020), https://arxiv.org/abs/1909.05734v2. Search in Google Scholar
[29] L. A. Betts, J. Duque-Rosero, S. Hashimoto and P. Spelier, Local heights on hyperelliptic curves and quadratic Chabauty, preprint (2024), https://arxiv.org/abs/2401.05228. Search in Google Scholar
[30] F. Bianchi, Quadratic Chabauty for (bi)elliptic curves and Kim’s conjecture, Algebra Number Theory 14 (2020), no. 9, 2369–2416. 10.2140/ant.2020.14.2369Search in Google Scholar
[31] F. Bianchi, 𝑝-Adic sigma functions and heights on Jacobians of genus 2 curves, preprint (2023), https://arxiv.org/abs/2302.03454. Search in Google Scholar
[32] F. Bianchi, E. Kaya and J. S. Müller, Coleman–Gross heights and 𝑝-adic Néron functions on Jacobians of genus 2 curves, preprint (2023), https://arxiv.org/abs/2310.15049. Search in Google Scholar
[33] F. Bianchi and O. Padurariu, Rational points on rank 2 genus 2 bielliptic curves in the LMFDB, LuCaNT: LMFDB, computation, and number theory, Contemp. Math. 796, American Mathematical Society, Providence (2024), 215–242. 10.1090/conm/796/16003Search in Google Scholar
[34] C. Blakestad, On generalizations of 𝑝-adic Weierstrass sigma and zeta functions, Ph.D. Thesis, University of Colorado, 2018. Search in Google Scholar
[35] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Math. Monogr. 4, Cambridge University, Cambridge 2006. Search in Google Scholar
[36] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin 1990. 10.1007/978-3-642-51438-8Search in Google Scholar
[37] N. Bruin and M. Stoll, The Mordell–Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. 10.1112/S1461157009000187Search in Google Scholar
[38] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. Search in Google Scholar
[39] A. Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser. 384, Cambridge University, Cambridge (2011), 1–50. 10.1017/CBO9780511984433.002Search in Google Scholar
[40] B. Chiarellotto and B. Le Stum, 𝐹-isocristaux unipotents, Compos. Math. 116 (1999), no. 1, 81–110. 10.1023/A:1000602824628Search in Google Scholar
[41] R. F. Coleman, Dilogarithms, regulators and 𝑝-adic 𝐿-functions, Invent. Math. 69 (1982), no. 2, 171–208. 10.1007/BF01399500Search in Google Scholar
[42] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. 10.1215/S0012-7094-85-05240-8Search in Google Scholar
[43] R. F. Coleman, Torsion points on curves and 𝑝-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168. 10.2307/1971194Search in Google Scholar
[44] R. F. Coleman, The universal vectorial bi-extension and 𝑝-adic heights, Invent. Math. 103 (1991), no. 3, 631–650. 10.1007/BF01239529Search in Google Scholar
[45] R. F. Coleman and E. de Shalit, 𝑝-adic regulators on curves and special values of 𝑝-adic 𝐿-functions, Invent. Math. 93 (1988), no. 2, 239–266. 10.1007/BF01394332Search in Google Scholar
[46] R. F. Coleman and B. H. Gross, 𝑝-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math. 17, Academic Press, Boston (1989), 73–81. 10.2969/aspm/01710073Search in Google Scholar
[47] R. F. Coleman and A. Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no. 1, 171–215. 10.1215/S0012-7094-99-09708-9Search in Google Scholar
[48] P. Colmez, Intégration sur les variétés 𝑝-adiques, Astérisque 248, Société Mathématique de France, Paris 1998. Search in Google Scholar
[49] P. Čoupek, D. T.-B. G. Lilienfeldt, L. X. Xiao and Z. Yao, Geometric quadratic Chabauty over number fields, Trans. Amer. Math. Soc. 376 (2023), no. 4, 2573–2613. 10.1090/tran/8802Search in Google Scholar
[50] N. Dogra and S. Le Fourn, Quadratic Chabauty for modular curves and modular forms of rank one, Math. Ann. 380 (2021), no. 1–2, 393–448. 10.1007/s00208-020-02112-3Search in Google Scholar
[51] T. Dokchitser, V. Dokchitser, C. Maistret and A. Morgan, Arithmetic of hyperelliptic curves over local fields, Math. Ann. 385 (2023), no. 3–4, 1213–1322. 10.1007/s00208-021-02319-ySearch in Google Scholar
[52] J. Duque-Rosero, S. Hashimoto and P. Spelier, Geometric quadratic Chabauty and 𝑝-adic heights, Expo. Math. 41 (2023), no. 3, 631–674. 10.1016/j.exmath.2023.05.003Search in Google Scholar
[53] B. Edixhoven and G. Lido, Geometric quadratic Chabauty, J. Inst. Math. Jussieu 22 (2023), no. 1, 279–333. 10.1017/S1474748021000244Search in Google Scholar
[54] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366. 10.1007/BF01388432Search in Google Scholar
[55] E. V. Flynn and N. P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), no. 4, 333–352. 10.4064/aa-79-4-333-352Search in Google Scholar
[56] H. Furusho, 𝑝-adic multiple zeta values. I. 𝑝-adic multiple polylogarithms and the 𝑝-adic KZ equation, Invent. Math. 155 (2004), no. 2, 253–286. 10.1007/s00222-003-0320-9Search in Google Scholar
[57] W. Gubler, Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 711–760. Search in Google Scholar
[58] W. Gubler and K. Künnemann, A tropical approach to nonarchimedean Arakelov geometry, Algebra Number Theory 11 (2017), no. 1, 77–180. 10.2140/ant.2017.11.77Search in Google Scholar
[59] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar
[60] E. Katz and E. Kaya, 𝑝-adic integration on bad reduction hyperelliptic curves, Int. Math. Res. Not. IMRN2022 (2022), no. 8, 6038–6106. 10.1093/imrn/rnaa272Search in Google Scholar
[61] E. Katz and D. Litt, p-adic iterated integration on semistable curves, preprint (2022), https://arxiv.org/abs/2202.05340. Search in Google Scholar
[62] E. Kaya, Explicit Vologodsky integration for hyperelliptic curves, Math. Comp. 91 (2022), no. 337, 2367–2396. 10.1090/mcom/3720Search in Google Scholar
[63]
M. Kim,
The motivic fundamental group of
[64] M. Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133. 10.2977/prims/1234361156Search in Google Scholar
[65] S. Lang, Fundamentals of Diophantine geometry, Springer, New York 1983. 10.1007/978-1-4757-1810-2Search in Google Scholar
[66] B. Lawrence and A. Venkatesh, Diophantine problems and 𝑝-adic period mappings, Invent. Math. 221 (2020), no. 3, 893–999. 10.1007/s00222-020-00966-7Search in Google Scholar
[67] B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math. 35, Birkhäuser, Boston (1983), 195–237. 10.1007/978-1-4757-9284-3_9Search in Google Scholar
[68] W. McCallum and B. Poonen, The method of Chabauty and Coleman, Explicit methods in number theory, Panor. Synthèses 36, Société Mathématique de France, Paris (2012), 99–117. Search in Google Scholar
[69] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs 1984), Springer, New York (1986), 103–150. 10.1007/978-1-4613-8655-1_5Search in Google Scholar
[70] J. S. Milne, Abelian varieties, unpublished course notes (2008). Search in Google Scholar
[71] L. Moret-Bailly, Métriques permises, Seminar on arithmetic bundles: The Mordell conjecture (Paris 1983/84), Astérisque 127, Société Mathématique de France, Paris (1985), 29–87. Search in Google Scholar
[72] J. S. Müller and M. Stoll, Canonical heights on genus-2 Jacobians, Algebra Number Theory 10 (2016), no. 10, 2153–2234. 10.2140/ant.2016.10.2153Search in Google Scholar
[73] D. Mumford, Abelian varieties, Hindustan Book, New Delhi 2008. Search in Google Scholar
[74] J. Nekovář, On 𝑝-adic height pairings, Séminaire de théorie des nombres (Paris 1990–91), Progr. Math. 108, Birkhäuser, Boston (1993), 127–202. 10.1007/978-1-4757-4271-8_8Search in Google Scholar
[75] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago 7, Hermann, Paris 1959. Search in Google Scholar
[76] S. Siksek, Explicit Chabauty over number fields, Algebra Number Theory 7 (2013), no. 4, 765–793. 10.2140/ant.2013.7.765Search in Google Scholar
[77] M. Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165–182. 10.4064/aa104-2-6Search in Google Scholar
[78] M. Stoll, An explicit theory of heights for hyperelliptic Jacobians of genus three, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham (2017), 665–715. 10.1007/978-3-319-70566-8_29Search in Google Scholar
[79] V. Vologodsky, Hodge structure on the fundamental group and its application to 𝑝-adic integration, Mosc. Math. J. 3 (2003), no. 1, 205–247, 260. 10.17323/1609-4514-2003-3-1-205-247Search in Google Scholar
[80] Y. G. Zarhin, 𝑝-adic heights on abelian varieties, Séminaire de théorie des nombres (Paris 1987–88), Progr. Math. 81, Birkhäuser, Boston (1990), 317–341. 10.1007/978-1-4612-3460-9_16Search in Google Scholar
[81] Y. G. Zarhin, 𝑝-adic abelian integrals and commutative Lie groups, J. Math. Sci. 81 (1996), no. 3, 2744–2750. 10.1007/BF02362339Search in Google Scholar
[82] S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston