Startseite Relatively Anosov groups: finiteness, measure of maximal entropy, and reparameterization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Relatively Anosov groups: finiteness, measure of maximal entropy, and reparameterization

  • Dongryul M. Kim ORCID logo und Hee Oh ORCID logo EMAIL logo
Veröffentlicht/Copyright: 3. Juli 2025

Abstract

For a geometrically finite Kleinian group Γ, the Bowen–Margulis–Sullivan measure is finite and is the unique measure of maximal entropy for the geodesic flow, as shown by Sullivan and Otal–Peigné respectively. Moreover, it is strongly mixing by a result of Babillot. We obtain a higher-rank analogue of this theorem. Given a relatively Anosov subgroup Γ of a semisimple real algebraic group, there is a family of flow spaces parameterized by linear forms tangent to the growth indicator. We construct a reparameterization of each flow space by the geodesic flow on the Groves–Manning space of Γ which exhibits exponential expansion along unstable foliations. Using this reparameterization, we prove that the Bowen–Margulis–Sullivan measure of each flow space is finite and is the unique measure of maximal entropy. Moreover, it is strongly mixing.

Award Identifier / Grant number: DMS-1900101

Funding statement: Hee Oh is partially supported by the NSF grant No. DMS-1900101.

Acknowledgements

We were informed that the ongoing work of Blayac, Canary, Zhu and Zimmer [4] contains a different proof of Theorem 1.1.

References

[1] M. Babillot, On the mixing property for hyperbolic systems, Israel J. Math. 129 (2002), 61–76. 10.1007/BF02773153Suche in Google Scholar

[2] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997), no. 1, 1–47. 10.1007/PL00001613Suche in Google Scholar

[3] Y. Benoist, Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups (Okayama–Kyoto 1997), Adv. Stud. Pure Math. 26, Mathematical Society of Japan, Tokyo (2000), 33–48. 10.2969/aspm/02610033Suche in Google Scholar

[4] P.-L. Blayac, R. Canary, F. Zhu and A. Zimmer, Counting, mixing and equidistribution for GPS systems with applications to relatively Anosov groups, preprint (2024), https://arxiv.org/abs/2404.09718. Suche in Google Scholar

[5] B. H. Bowditch, Convergence groups and configuration spaces, Geometric group theory down under (Canberra 1996), De Gruyter, Berlin (1999), 23–54. Suche in Google Scholar

[6] B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, Article ID 1250016. 10.1142/S0218196712500166Suche in Google Scholar

[7] M. Bridgeman, R. Canary, F. Labourie and A. Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015), no. 4, 1089–1179. 10.1007/s00039-015-0333-8Suche in Google Scholar

[8] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss. 319, Springer, Berlin 1999. 10.1007/978-3-662-12494-9Suche in Google Scholar

[9] R. Canary, T. Zhang and A. Zimmer, Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups, Adv. Math. 404 (2022), Article ID 108439. 10.1016/j.aim.2022.108439Suche in Google Scholar

[10] R. Canary, T. Zhang and A. Zimmer, Patterson–Sullivan measures for transverse subgroups, J. Mod. Dyn. 20 (2024), 319–377. 10.3934/jmd.2024009Suche in Google Scholar

[11] R. Canary, T. Zhang and A. Zimmer, Patterson–Sullivan measures for relatively Anosov groups, Math. Ann. 392 (2025), no. 2, 2309–2363. 10.1007/s00208-025-03137-2Suche in Google Scholar

[12] M. Chow and P. Sarkar, Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces, Int. Math. Res. Not. IMRN 2023 (2023), no. 18, 15834–15895. 10.1093/imrn/rnac342Suche in Google Scholar

[13] K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1507–1530. 10.1090/S0002-9947-99-02113-3Suche in Google Scholar

[14] M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc. 10, American Mathematical Society, Providence (2010), 155–241. Suche in Google Scholar

[15] D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. 10.1007/s11856-008-1070-6Suche in Google Scholar

[16] U. Hamenstädt, A new description of the Bowen–Margulis measure, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 455–464. 10.1017/S0143385700005095Suche in Google Scholar

[17] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl. 54, Cambridge University, Cambridge 1995. 10.1017/CBO9780511809187Suche in Google Scholar

[18] D. M. Kim, H. Oh and Y. Wang, Properly discontinous actions, growth indicators and conformal measures for transverse subgroups, preprint (2023), https://arxiv.org/abs/2306.06846. Suche in Google Scholar

[19] D. M. Kim, H. Oh and Y. Wang, Ergodic dichotomy for subspace flows in higher rank, Commun. Am. Math. Soc. 5 (2025), 1–47. 10.1090/cams/43Suche in Google Scholar

[20] F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 203–219. 10.1017/S0143385700001528Suche in Google Scholar

[21] M. Lee and H. Oh, Invariant measures for horospherical actions and Anosov groups, Int. Math. Res. Not. IMRN 2023 (2023), no. 19, 16226–16295. 10.1093/imrn/rnac262Suche in Google Scholar

[22] M. Lee and H. Oh, Dichotomy and measures on limit sets of Anosov groups, Int. Math. Res. Not. IMRN 2024 (2024), no. 7, 5658–5688. 10.1093/imrn/rnad188Suche in Google Scholar

[23] G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44–55. 10.2307/2007099Suche in Google Scholar

[24] J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. J. 125 (2004), no. 1, 15–44. 10.1215/S0012-7094-04-12512-6Suche in Google Scholar

[25] J.-F. Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002), no. 3, 563–608. 10.1007/s00014-002-8352-0Suche in Google Scholar

[26] J.-F. Quint, Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002), no. 4, 776–809. 10.1007/s00039-002-8266-4Suche in Google Scholar

[27] A. Sambarino, Quantitative properties of convex representations, Comment. Math. Helv. 89 (2014), no. 2, 443–488. 10.4171/cmh/324Suche in Google Scholar

[28] A. Sambarino, A report on an ergodic dichotomy, Ergodic Theory Dynam. Systems 44 (2024), no. 1, 236–289. 10.1017/etds.2023.13Suche in Google Scholar

[29] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3–4, 259–277. 10.1007/BF02392379Suche in Google Scholar

[30] K. Tsouvalas, Anosov representations, strongly convex cocompact groups and weak eigenvalue gaps, preprint (2020), https://arxiv.org/abs/2008.04462. Suche in Google Scholar

[31] D. Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, Israel J. Math. 210 (2015), no. 1, 467–507. 10.1007/s11856-015-1258-5Suche in Google Scholar

[32] F. Zhu and A. Zimmer, Relatively Anosov representations via flows I: Theory, Groups Geom. Dyn. (2025), 10.4171/GGD/878. 10.4171/GGD/878Suche in Google Scholar

Received: 2024-05-16
Revised: 2025-05-16
Published Online: 2025-07-03
Published in Print: 2025-09-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2025-0040/html?lang=de
Button zum nach oben scrollen