Abstract
We develop a Morse–Lusternik–Schnirelmann theory for the distance between two points of a smoothly embedded circle in a complete Riemannian manifold. This theory suggests very naturally a definition of width that generalises the classical definition of the width of plane curves. Pairs of points of the circle realising the width bound one or more minimising geodesics that intersect the curve in special configurations. When the circle bounds a totally convex disc, we classify the possible configurations under a further geometric condition. We also investigate properties and characterisations of curves that can be regarded as the Riemannian analogues of plane curves of constant width.
Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Award Identifier / Grant number: 309908/2021-3
Award Identifier / Grant number: 311028/2020.9
Award Identifier / Grant number: SEI-260003/000534/2023
Award Identifier / Grant number: SEI-260003/001527/2023
Funding statement: Lucas Ambrozio is supported by CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico (309908/2021-3 – Bolsa PQ) and by FAPERJ – Fundaçao Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant SEI-260003/000534/2023 – BOLSA E-26/200.175/2023 and grant SEI-260003/001527/2023 – APQ1 E-26/210.319/2023). Rafael Montezuma is supported by Instituto Serrapilheira grant “New perspectives of the min-max theory for the area functional” and by CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico (311028/2020.9 – Bolsa PQ). Roney Santos is supported by Instituto Serrapilheira grant “New perspectives of the min-max theory for the area functional”.
References
[1] A. Abbondandolo, B. Bramham, U. L. Hryniewicz and P. A. S. Salomão, Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math. 211 (2018), no. 2, 687–778. Suche in Google Scholar
[2] I. M. Adelstein, Minimizing geodesic nets and critical points of distance, Differential Geom. Appl. 70 (2020), Article ID 101624. Suche in Google Scholar
[3] L. Ambrozio and R. Montezuma, On the min-max width of unit volume three-spheres, J. Differential Geom. 126 (2024), no. 3, 875–907. Suche in Google Scholar
[4] J. Bolton, Transnormal hypersurfaces, Proc. Cambridge Philos. Soc. 74 (1973), 43–48. Suche in Google Scholar
[5] W. Bos, Kritische Sehnen auf Riemannschen Elementarraumstücken, Math. Ann. 151 (1963), 431–451. Suche in Google Scholar
[6] C. B. Croke, Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988), no. 1, 1–21. Suche in Google Scholar
[7] B. V. Dekster, Width and breadth for convex bodies in Riemannian manifolds, Arch. Math. (Basel) 58 (1992), no. 2, 190–198. Suche in Google Scholar
[8] S. Donato, The first 𝑝-widths of the unit disk, J. Geom. Anal. 32 (2022), no. 6, Paper No. 177. Suche in Google Scholar
[9] S. Donato and R. Montezuma, The first width of non-negatively curved surfaces with convex boundary, J. Geom. Anal. 34 (2024), no. 2, Paper No. 60. Suche in Google Scholar
[10] J. P. Fillmore, Symmetries of surfaces of constant width, J. Differential Geom. 3 (1969), 103–110. Suche in Google Scholar
[11] T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. of Math. (2) 83 (1966), 68–73. Suche in Google Scholar
[12] A. Fraser and M. M. Li, Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary, J. Differential Geom. 96 (2014), no. 2, 183–200. Suche in Google Scholar
[13] A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory 7 (2017), no. 2, 321–359. Suche in Google Scholar
[14] H. Gluck and W. Ziller, Existence of periodic motions of conservative systems, Seminar on minimal submanifolds, Ann. of Math. Stud. 103, Princeton University, Princeton (1983), 65–98. Suche in Google Scholar
[15] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. Suche in Google Scholar
[16] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. Suche in Google Scholar
[17] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201–211. Suche in Google Scholar
[18] M. M. Li, Chord shortening flow and a theorem of Lusternik and Schnirelmann, Pacific J. Math. 299 (2019), no. 2, 469–488. Suche in Google Scholar
[19] L. Lusternik and L. Schnirelmann, Méthodes Topologiques dans les problèmes variationnels, Hermann and Cie, Paris 1934. Suche in Google Scholar
[20] F. C. Marques and A. Neves, Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J. 161 (2012), no. 14, 2725–2752. Suche in Google Scholar
[21] W. Meyer, Toponogov’s theorem and applications, Lecture Notes, College on Differential Geometry, Trieste 1989, https://indico.ictp.it/event/a02178/contribution/8/material/0/0.pdf. Suche in Google Scholar
[22] J. Milnor, Morse theory, Ann. of Math. Stud. 51, Princeton University, Princeton 1963. Suche in Google Scholar
[23] A. Nabutovsky and R. Rotman, Linear bounds for lengths of geodesic loops on Riemannian 2-spheres, J. Differential Geom. 89 (2011), no. 2, 217–232. Suche in Google Scholar
[24] S. Nishikawa, Transnormal hypersurfaces: Generalized constant width for Riemannian manifolds, Tohoku Math. J. (2) 25 (1973), 451–459. Suche in Google Scholar
[25] S. Nishikawa, Compact two-transnormal hypersurfaces in a space of constant curvature, J. Math. Soc. Japan 26 (1974), 625–635. Suche in Google Scholar
[26] S. A. Robertson, Generalised constant width for manifolds, Michigan Math. J. 11 (1964), 97–105. Suche in Google Scholar
[27] L. A. Santaló, Integral geometry and geometric probability, Encyclopedia Math. Appl. 1, Addison-Wesley, Reading 1976. Suche in Google Scholar
[28] B. Wegner, Globale Sätze über Raumkurven konstanter Breite, Math. Nachr. 53 (1972), 337–344. Suche in Google Scholar
[29] B. Wegner, Globale Sätze über Raumkurven konstanter Breite. II, Math. Nachr. 67 (1975), 213–223. Suche in Google Scholar
[30] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108 (1978), no. 3, 507–518. Suche in Google Scholar
[31] X. Zhou, On the free boundary min-max geodesics, Int. Math. Res. Not. IMRN 2016 (2016), no. 5, 1447–1466. Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- K-moduli of Fano threefolds and genus four curves
- Conformally covariant boundary operators and sharp higher order CR Sobolev trace inequalities on the Siegel domain and complex ball
- Dynamique analytique sur 𝐙. II : Écart uniforme entre Lattès et conjecture de Bogomolov-Fu-Tschinkel
- Continuous sparse domination and dimensionless weighted estimates for the Bakry–Riesz vector
- Entire hypersurfaces of constant scalar curvature in Minkowski space
- On the singular loci of higher secant varieties of Veronese embeddings
- A proof of Vishik’s nonuniqueness theorem for the forced 2D Euler equation
- The width of embedded circles
Artikel in diesem Heft
- Frontmatter
- K-moduli of Fano threefolds and genus four curves
- Conformally covariant boundary operators and sharp higher order CR Sobolev trace inequalities on the Siegel domain and complex ball
- Dynamique analytique sur 𝐙. II : Écart uniforme entre Lattès et conjecture de Bogomolov-Fu-Tschinkel
- Continuous sparse domination and dimensionless weighted estimates for the Bakry–Riesz vector
- Entire hypersurfaces of constant scalar curvature in Minkowski space
- On the singular loci of higher secant varieties of Veronese embeddings
- A proof of Vishik’s nonuniqueness theorem for the forced 2D Euler equation
- The width of embedded circles