Abstract
In this article, we study the K-moduli space of Fano threefolds obtained by blowing up
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-2237139
Funding statement: Research of Yuchen Liu was supported in part by the NSF CAREER Grant DMS-2237139 and the Alfred P. Sloan Foundation.
Acknowledgements
We would like to thank Kenneth Ascher, Dori Bejleri, Harold Blum, Izzet Coşkun, Kristin DeVleming, Tiago Duarte Guerreiro, Lawrence Ein, Philip Engel, Luca Giovenzana, Lena Ji, Ananth Shankar, Nivedita Viswanathan, Xiaowei Wang and Zhiwei Zheng for helpful discussions. We also thank the anonymous referee for the revision suggestions.
References
[1] H. Abban, I. Cheltsov, E. Denisova, E. Etxabarri-Alberdi, A.-S. Kaloghiros, D. Jiao, J. Martinez-Garcia and T. Papazachariou, One-dimensional components in the K-moduli of smooth Fano 3-folds, Algebraic Geom., to appear. Suche in Google Scholar
[2] H. Abban, I. Cheltsov, A. Kasprzyk, Y. Liu and A. Petracci, On K-moduli of quartic threefolds, Algebraic Geom., to appear. Suche in Google Scholar
[3] H. Abban and Z. Zhuang, K-stability of Fano varieties via admissible flags, Forum Math. Pi 10 (2022), Paper No. e15. Suche in Google Scholar
[4] V. Alexeev and P. Engel, Compact moduli of K3 surfaces, Ann. of Math. (2) 198 (2023), no. 2, 727–789. Suche in Google Scholar
[5] J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–2402. Suche in Google Scholar
[6] J. Alper, H. Blum, D. Halpern-Leistner and C. Xu, Reductivity of the automorphism group of 𝐾-polystable Fano varieties, Invent. Math. 222 (2020), no. 3, 995–1032. Suche in Google Scholar
[7] J. Alper, M. Fedorchuk and D. I. Smyth, Second flip in the Hassett–Keel program: Existence of good moduli spaces, Compos. Math. 153 (2017), no. 8, 1584–1609. Suche in Google Scholar
[8] J. Alper, M. Fedorchuk and D. I. Smyth, Second flip in the Hassett–Keel program: Projectivity, Int. Math. Res. Not. IMRN 2017 (2017), no. 24, 7375–7419. Suche in Google Scholar
[9] J. Alper, M. Fedorchuk, D. I. Smyth and F. van der Wyck, Second flip in the Hassett–Keel program: A local description, Compos. Math. 153 (2017), no. 8, 1547–1583. Suche in Google Scholar
[10] F. Ambro, Ladders on Fano varieties, J. Math. Sci. 94 (1999), 1126–1135. Suche in Google Scholar
[11] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martinez-Garcia, C. Shramov, H. Süß and N. Viswanathan, The Calabi problem for Fano threefolds, London Math. Soc. Lecture Note Ser. 485, Cambridge University, Cambridge 2023. Suche in Google Scholar
[12] K. Ascher, K. DeVleming and Y. Liu, K-moduli of curves on a quadric surface and K3 surfaces, J. Inst. Math. Jussieu 22 (2023), no. 3, 1251–1291. Suche in Google Scholar
[13] K. Ascher, K. DeVleming and Y. Liu, K-stability and birational models of moduli of quartic K3 surfaces, Invent. Math. 232 (2023), no. 2, 471–552. Suche in Google Scholar
[14] K. Ascher, K. DeVleming and Y. Liu, Wall crossing for K-moduli spaces of plane curves, Proc. Lond. Math. Soc. (3) 128 (2024), no. 6, Article ID e12615. Suche in Google Scholar
[15] O. Benoist, Quelques espaces de modules d’intersections complètes lisses qui sont quasi-projectifs, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 8, 1749–1774. Suche in Google Scholar
[16] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. Suche in Google Scholar
[17] H. Blum, D. Halpern-Leistner, Y. Liu and C. Xu, On properness of K-moduli spaces and optimal degenerations of Fano varieties, Selecta Math. (N. S.) 27 (2021), no. 4, Paper No. 73. Suche in Google Scholar
[18] H. Blum and Y. Liu, Openness of uniform K-stability in families of ℚ-Fano varieties, Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), no. 1, 1–41. Suche in Google Scholar
[19] H. Blum, Y. Liu and C. Xu, Openness of K-semistability for Fano varieties, Duke Math. J. 171 (2022), no. 13, 2753–2797. Suche in Google Scholar
[20] H. Blum and C. Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 609–656. Suche in Google Scholar
[21] S. Casalaina-Martin, D. Jensen and R. Laza, Log canonical models and variation of GIT for genus 4 canonical curves, J. Algebraic Geom. 23 (2014), no. 4, 727–764. Suche in Google Scholar
[22] I. Cheltsov, T. Duarte Guerreiro, K. Fujita, I. Krylov and J. Martinez-Garcia, K-stability of Casagrande–Druel varieties, J. reine angew. Math. 818 (2025), 53–113. Suche in Google Scholar
[23] I. Cheltsov, M. Fedorchuk, K. Fujita and A.-S. Kaloghiros, K-moduli of pure states of four qubits, preprint (2024), https://arxiv.org/abs/2412.19972. Suche in Google Scholar
[24] I. Cheltsov and A. Thompson, K-moduli of Fano threefolds in family 3.10, preprint (2023), https://arxiv.org/abs/2309.12524; to appear in Moduli. Suche in Google Scholar
[25] G. Codogni and Z. Patakfalvi, Positivity of the CM line bundle for families of 𝐾-stable klt Fano varieties, Invent. Math. 223 (2021), no. 3, 811–894. Suche in Google Scholar
[26] K. DeVleming, L. Ji, P. Kennedy-Hunt and M. H. Quek, The K-moduli space of a family of conic bundles threefolds, preprint (2024), https://arxiv.org/abs/2403.09557. Suche in Google Scholar
[27]
I. V. Dolgachev,
Mirror symmetry for lattice polarized
[28] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. Suche in Google Scholar
[29]
T. Duarte Guerreiro, L. Giovenzana and N. Viswanathan,
On K-stability of
[30] M. Fedorchuk, The final log canonical model of the moduli space of stable curves of genus 4, Int. Math. Res. Not. IMRN 2012 (2012), no. 24, 5650–5672. Suche in Google Scholar
[31] M. Fedorchuk and D. I. Smyth, Stability of genus five canonical curves, A celebration of algebraic geometry, Clay Math. Proc. 18, American Mathematical Society, Providence (2013), 281–310. Suche in Google Scholar
[32] K. Fujita, Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Amer. J. Math. 140 (2018), no. 2, 391–414. Suche in Google Scholar
[33] K. Fujita, A valuative criterion for uniform K-stability of ℚ-Fano varieties, J. reine angew. Math. 751 (2019), 309–338. Suche in Google Scholar
[34] T. Fujita, On singular del Pezzo varieties, Algebraic geometry, Lecture Notes in Math. 1417, Springer, Berlin (1990), 117–128. Suche in Google Scholar
[35] B. Hassett, Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory, Progr. Math. 235, Birkhäuser, Boston (2005), 169–192. Suche in Google Scholar
[36] B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: The first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471–4489. Suche in Google Scholar
[37] B. Hassett and D. Hyeon, Log minimal model program for the moduli space of stable curves: The first flip, Ann. of Math. (2) 177 (2013), no. 3, 911–968. Suche in Google Scholar
[38] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University, Cambridge 2016. Suche in Google Scholar
[39] D. Hyeon and Y. Lee, Log minimal model program for the moduli space of stable curves of genus three, Math. Res. Lett. 17 (2010), no. 4, 625–636. Suche in Google Scholar
[40] V. A. Iskovskikh and Y. G. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci. 47, Springer, Berlin (1999), 1–247. Suche in Google Scholar
[41] C. Jiang, Boundedness of ℚ-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248. Suche in Google Scholar
[42] A.-S. Kaloghiros and A. Petracci, On toric geometry and K-stability of Fano varieties, Trans. Amer. Math. Soc. Ser. B 8 (2021), 548–577. Suche in Google Scholar
[43] Y. Kawamata, On effective non-vanishing and base-point-freeness, Asian J. Math. 4 (2000), 173–181. Suche in Google Scholar
[44] F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “div”, Math. Scand. 39 (1976), no. 1, 19–55. Suche in Google Scholar
[45] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University, Cambridge 1998. Suche in Google Scholar
[46] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. Suche in Google Scholar
[47] C. Li, K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017), no. 16, 3147–3218. Suche in Google Scholar
[48] C. Li, X. Wang and C. Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. Suche in Google Scholar
[49] Y. Liu, The volume of singular Kähler–Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. Suche in Google Scholar
[50] Y. Liu, K-stability of cubic fourfolds, J. reine angew. Math. 786 (2022), 55–77. Suche in Google Scholar
[51] Y. Liu and C. Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. Suche in Google Scholar
[52] Y. Liu, C. Xu and Z. Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. (2) 196 (2022), no. 2, 507–566. Suche in Google Scholar
[53] T. Mabuchi and S. Mukai, Stability and Einstein–Kähler metric of a quartic del Pezzo surface, Einstein metrics and Yang–Mills connections (Sanda 1990), Lecture Notes Pure Appl. Math. 145, Dekker, New York (1993), 133–160. Suche in Google Scholar
[54]
A. L. Mayer,
Families of
[55]
S. Mori and S. Mukai,
Erratum: “Classification of Fano 3-folds with
[56]
F. Müller,
The final log canonical model of
[57] Y. Odaka, The GIT stability of polarized varieties via discrepancy, Ann. of Math. (2) 177 (2013), no. 2, 645–661. Suche in Google Scholar
[58] Y. Odaka, C. Spotti and S. Sun, Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics, J. Differential Geom. 102 (2016), no. 1, 127–172. Suche in Google Scholar
[59] T. S. Papazachariou, K-moduli of log Fano complete intersections, preprint (2022), https://arxiv.org/abs/2212.09332. Suche in Google Scholar
[60] S. Paul and G. Tian, CM stability and the generalised Futaki invariant I, preprint (2006), https://arxiv.org/abs/math/0605278. Suche in Google Scholar
[61] S. T. Paul and G. Tian, CM stability and the generalized Futaki invariant II, From probability to geometry II, Astérisque 328, Société Mathématique de France, Paris (2009), 339–354. Suche in Google Scholar
[62] A. Petracci, K-moduli of Fano 3-folds can have embedded points, preprint (2021), https://arxiv.org/abs/2105.02307. Suche in Google Scholar
[63] A. Petracci, On deformation spaces of toric singularities and on singularities of K-moduli of Fano varieties, Trans. Amer. Math. Soc. 375 (2022), no. 8, 5617–5643. Suche in Google Scholar
[64] M. Reid, Projective morphisms according to Kawamata, preprint (1983). Suche in Google Scholar
[65] L. Robbiano, Some properties of complete intersections in “good” projective varieties, Nagoya Math. J. 61 (1976), 103–111. Suche in Google Scholar
[66]
B. Saint-Donat,
Projective models of
[67] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17–26. Suche in Google Scholar
[68] V. V. Šokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 430–441. Suche in Google Scholar
[69] C. Spotti and S. Sun, Explicit Gromov–Hausdorff compactifications of moduli spaces of Kähler–Einstein Fano manifolds, Pure Appl. Math. Q. 13 (2017), no. 3, 477–515. Suche in Google Scholar
[70] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. Suche in Google Scholar
[71] C. Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. Suche in Google Scholar
[72] C. Xu, K-stability of Fano varieties: An algebro-geometric approach, EMS Surv. Math. Sci. 8 (2021), no. 1–2, 265–354. Suche in Google Scholar
[73] C. Xu, K-stability of Fano varieties, Princeton University, Princeton 2024. Suche in Google Scholar
[74] C. Xu and Z. Zhuang, On positivity of the CM line bundle on K-moduli spaces, Ann. of Math. (2) 192 (2020), no. 3, 1005–1068. Suche in Google Scholar
[75] C. Xu and Z. Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. Suche in Google Scholar
[76] J. Zhao, The moduli space of genus six curves and K-stability: VGIT and the Hassett–Keel program, preprint (2023), https://arxiv.org/abs/2304.13259. Suche in Google Scholar
[77] Z. Zhuang, Optimal destabilizing centers and equivariant K-stability, Invent. Math. 226 (2021), no. 1, 195–223. Suche in Google Scholar
[78] The Stacks project authors, stacks project, 2025. Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- K-moduli of Fano threefolds and genus four curves
- Conformally covariant boundary operators and sharp higher order CR Sobolev trace inequalities on the Siegel domain and complex ball
- Dynamique analytique sur 𝐙. II : Écart uniforme entre Lattès et conjecture de Bogomolov-Fu-Tschinkel
- Continuous sparse domination and dimensionless weighted estimates for the Bakry–Riesz vector
- Entire hypersurfaces of constant scalar curvature in Minkowski space
- On the singular loci of higher secant varieties of Veronese embeddings
- A proof of Vishik’s nonuniqueness theorem for the forced 2D Euler equation
- The width of embedded circles
Artikel in diesem Heft
- Frontmatter
- K-moduli of Fano threefolds and genus four curves
- Conformally covariant boundary operators and sharp higher order CR Sobolev trace inequalities on the Siegel domain and complex ball
- Dynamique analytique sur 𝐙. II : Écart uniforme entre Lattès et conjecture de Bogomolov-Fu-Tschinkel
- Continuous sparse domination and dimensionless weighted estimates for the Bakry–Riesz vector
- Entire hypersurfaces of constant scalar curvature in Minkowski space
- On the singular loci of higher secant varieties of Veronese embeddings
- A proof of Vishik’s nonuniqueness theorem for the forced 2D Euler equation
- The width of embedded circles