Startseite Bounds on Cheeger–Gromov invariants and simplicial complexity of triangulated manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bounds on Cheeger–Gromov invariants and simplicial complexity of triangulated manifolds

  • Geunho Lim ORCID logo EMAIL logo und Shmuel Weinberger ORCID logo
Veröffentlicht/Copyright: 16. Februar 2024

Abstract

We show the existence of linear bounds on Wall 𝜌-invariants of PL manifolds, employing a new combinatorial concept of 𝐺-colored polyhedra. As an application, we show how the number of h-cobordism classes of manifolds simple homotopy equivalent to a lens space with 𝑉 simplices and the fundamental group of Zn grows in 𝑉. Furthermore, we count the number of homotopy lens spaces with bounded geometry in 𝑉. Similarly, we give new linear bounds on Cheeger–Gromov 𝜌-invariants of PL manifolds endowed with a faithful representation also. A key idea is to construct a cobordism with a linear complexity whose boundary is π1-injectively embedded, using relative hyperbolization. As an application, we study the complexity theory of high-dimensional lens spaces. Lastly, we show the density of 𝜌-invariants over manifolds homotopy equivalent to a given manifold for certain fundamental groups. This implies that the structure set is not finitely generated.

Award Identifier / Grant number: 2019R1A3B2067839

Award Identifier / Grant number: DMS-2105451

Funding statement: G. Lim was partially supported by the National Research Foundation of Korea grant 2019R1A3B2067839. S. Weinberger was partially supported by the National Science Foundation grant DMS-2105451.

Acknowledgements

We would like to thank Jae Choon Cha and Fedya Manin for very stimulating conversations on a number of topics around the contents of this paper.

References

[1] P. Albin, E. Leichtnam, R. Mazzeo and P. Piazza, The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 2, 241–310. 10.24033/asens.2165Suche in Google Scholar

[2] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’honneur de Henri Cartan, Astérisque 32–33, Société Mathématique de France, Paris (1976), 43–72. Suche in Google Scholar

[3] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491. 10.2307/1970721Suche in Google Scholar

[4] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99. 10.1017/S0305004100052105Suche in Google Scholar

[5] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. 10.2307/1970717Suche in Google Scholar

[6] H. Bass, Algebraic 𝐾-theory, W. A. Benjamin, New York 1968. Suche in Google Scholar

[7] G. Baumslag, E. Dyer and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), no. 1, 1–47. 10.1016/0022-4049(80)90040-7Suche in Google Scholar

[8] W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 242–245. 10.1090/S0002-9904-1967-11700-2Suche in Google Scholar

[9] S. E. Cappell and J. L. Shaneson, On four dimensional surgery and applications, Comment. Math. Helv. 46 (1971), 500–528. 10.1007/BF02566862Suche in Google Scholar

[10] J. C. Cha, A topological approach to Cheeger-Gromov universal bounds for von Neumann 𝜌-invariants, Comm. Pure Appl. Math. 69 (2016), no. 6, 1154–1209. 10.1002/cpa.21597Suche in Google Scholar

[11] J. C. Cha and G. Lim, Quantitative bordism over acyclic groups and Cheeger–Gromov 𝜌-invariants, in preparation. Suche in Google Scholar

[12] G. R. Chambers, D. Dotterrer, F. Manin and S. Weinberger, Quantitative null-cobordism, J. Amer. Math. Soc. 31 (2018), no. 4, 1165–1203. 10.1090/jams/903Suche in Google Scholar

[13] S. Chang, On conjectures of Mathai and Borel, Geom. Dedicata 106 (2004), 161–167. 10.1023/B:GEOM.0000033834.29385.66Suche in Google Scholar

[14] S. Chang and S. Weinberger, On invariants of Hirzebruch and Cheeger–Gromov, Geom. Topol. 7 (2003), 311–319. 10.2140/gt.2003.7.311Suche in Google Scholar

[15] S. Chang and S. Weinberger, A course on surgery theory, Ann. of Math. Stud. 211, Princeton University, Princeton 2021. 10.1515/9780691200354Suche in Google Scholar

[16] J. Cheeger and M. Gromov, Bounds on the von Neumann dimension of L2-cohomology and the Gauss–Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985), no. 1, 1–34. 10.4310/jdg/1214439461Suche in Google Scholar

[17] J. Cheeger and M. Gromov, On the characteristic numbers of complete manifolds of bounded curvature and finite volume, Differential geometry and complex analysis, Springer, Berlin (1985), 115–154. 10.1007/978-3-642-69828-6_9Suche in Google Scholar

[18] J. Cheeger, W. Müller and R. Schrader, On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984), no. 3, 405–454. 10.1007/BF01210729Suche in Google Scholar

[19] T. D. Cochran, K. E. Orr and P. Teichner, Knot concordance, Whitney towers and L2-signatures, Ann. of Math. (2) 157 (2003), no. 2, 433–519. 10.4007/annals.2003.157.433Suche in Google Scholar

[20] F. Costantino, Complexity of 4-manifolds, Exp. Math. 15 (2006), no. 2, 237–249. 10.1080/10586458.2006.10128960Suche in Google Scholar

[21] M. W. Davis and T. Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991), no. 2, 347–388. 10.4310/jdg/1214447212Suche in Google Scholar

[22] M. W. Davis, T. Januszkiewicz and S. Weinberger, Relative hyperbolization and aspherical bordisms: An addendum to “Hyperbolization of polyhedra”, J. Differential Geom. 58 (2001), no. 3, 535–541. 10.4310/jdg/1090348358Suche in Google Scholar

[23] M. Gromov, Volume and bounded cohomology, Publ. Math. Inst. Hautes Études Sci. 56 (1982), 5–99. Suche in Google Scholar

[24] J.-C. Hausmann, On the homotopy of nonnilpotent spaces, Math. Z. 178 (1981), no. 1, 115–123. 10.1007/BF01218375Suche in Google Scholar

[25] F. Hirzebruch, Involutionen auf Mannigfaltigkeiten, Proceedings of the Conference on Transformation Groups, Springer, New York (1968), 148–166. 10.1007/978-3-642-46141-5_7Suche in Google Scholar

[26] W. Jaco, H. Rubinstein and S. Tillmann, Minimal triangulations for an infinite family of lens spaces, J. Topol. 2 (2009), no. 1, 157–180. 10.1112/jtopol/jtp004Suche in Google Scholar

[27] M. Lackenby and J. S. Purcell, The triangulation complexity of fibred 3-manifolds, preprint (2019), https://arxiv.org/abs/1910.10914. Suche in Google Scholar

[28] E. Leichtnam and P. Piazza, On higher eta-invariants and metrics of positive scalar curvature, 𝐾-Theory 24 (2001), no. 4, 341–359. 10.1023/A:1014079307698Suche in Google Scholar

[29] G. Lim, Enhanced bounds for rho-invariants for both general and spherical 3-manifolds, J. Topol. Anal. (2022), 10.1142/S1793525322500029. 10.1142/S1793525322500029Suche in Google Scholar

[30] S. Mac Lane, Homology, Class. Math., Springer, Berlin 1995. Suche in Google Scholar

[31] F. Manin and S. Weinberger, Quantitative PL bordism, preprint (2023), https://arxiv.org/abs/2311.16389. Suche in Google Scholar

[32] S. V. Matveev, Complexity theory of three-dimensional manifolds, Acta Appl. Math. 19 (1990), no. 2, 101–130. 10.1007/BF00049576Suche in Google Scholar

[33] J. P. May, Simplicial objects in algebraic topology, Chic. Lectures in Math., University of Chicago, Chicago 1992. Suche in Google Scholar

[34] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. 10.1090/S0002-9904-1966-11484-2Suche in Google Scholar

[35] J. C. Moore, Semi-simplicial complexes and Postnikov systems, International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, México (1958), 232–247. Suche in Google Scholar

[36] P. Piazza and T. Schick, Rho-classes, index theory and Stolz’ positive scalar curvature sequence, J. Topol. 7 (2014), no. 4, 965–1004. 10.1112/jtopol/jtt048Suche in Google Scholar

[37] M. Ramachandran, von Neumann index theorems for manifolds with boundary, J. Differential Geom. 38 (1993), no. 2, 315–349. 10.4310/jdg/1214454297Suche in Google Scholar

[38] D. B. Ray and I. M. Singer, 𝑅-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145–210. 10.1016/0001-8708(71)90045-4Suche in Google Scholar

[39] P. H. Siegel, Witt spaces: A geometric cycle theory for KO-homology at odd primes, Amer. J. Math. 105 (1983), no. 5, 1067–1105. 10.2307/2374334Suche in Google Scholar

[40] C. Soulé, Perfect forms and the Vandiver conjecture, J. reine angew. Math. 517 (1999), 209–221. 10.1515/crll.1999.095Suche in Google Scholar

[41] C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Math. Surveys Monogr. 69, American Mathematical Society, Providence 1999. 10.1090/surv/069Suche in Google Scholar

[42] S. Weinberger, Homotopy equivalent manifolds by pasting, Current trends in algebraic topology, CMS Conf. Proc. 2, American Mathematical Society, Providence (1982), 423–433. Suche in Google Scholar

[43] S. Weinberger and G. Yu, Finite part of operator 𝐾-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol. 19 (2015), no. 5, 2767–2799. 10.2140/gt.2015.19.2767Suche in Google Scholar

[44] R. F. Williams, A useful functor and three famous examples in topology, Trans. Amer. Math. Soc. 106 (1963), 319–329. 10.1090/S0002-9947-1963-0146832-0Suche in Google Scholar

Received: 2023-05-08
Revised: 2024-01-09
Published Online: 2024-02-16
Published in Print: 2024-03-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2024-0003/html
Button zum nach oben scrollen