Startseite Ramified covers of abelian varieties over torsion fields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ramified covers of abelian varieties over torsion fields

  • Lior Bary-Soroker , Arno Fehm EMAIL logo und Sebastian Petersen
Veröffentlicht/Copyright: 1. November 2023

Abstract

We study rational points on ramified covers of abelian varieties over certain infinite Galois extensions of . In particular, we prove that every elliptic curve E over has the weak Hilbert property of Corvaja and Zannier both over the maximal abelian extension ab of , and over the field ( A tor ) obtained by adjoining to all torsion points of some abelian variety A over .


Dedicated to Moshe Jarden on the occasion of his 80th birthday


Funding statement: Lior Bary-Soroker was supported by the Israel Science Foundation (grant no. 702/19). Sebastian Petersen was supported by a research grant UMO-2018/31/B/ST1/01474 of the National Centre of Sciences of Poland.

Acknowledgements

The authors would like to thank Daniele Garzoni for helpful discussions around [12], Cornelius Greither for interesting discussions around Lemma 2.11, Remy van Dobben de Bruyn for the suggestion to use the Hilbert scheme in the proof of Lemma 2.13, and the referee as well as Jakob Stix for helpful remarks on the submitted version. Part of this work was done while A.F. was a guest of Tel Aviv University, and he would like to thank the School of Mathematics for their hospitality.

References

[1] L. Bary-Soroker and A. Fehm, Open problems in the theory of ample fields, Geometric and differential Galois theories, Sémin. Congr. 27, Société Mathématique de France, Paris (2013), 1–11. Suche in Google Scholar

[2] L. Bary-Soroker, A. Fehm and S. Petersen, On varieties of Hilbert type, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 5, 1893–1901. 10.5802/aif.2899Suche in Google Scholar

[3] L. Bary-Soroker, A. Fehm and G. Wiese, Hilbertian fields and Galois representations, J. reine angew. Math. 712 (2016), 123–139. 10.1515/crelle-2013-0116Suche in Google Scholar

[4] L. Bary-Soroker and D. Garzoni, Hilbert’s irreducibility theorem via random walks, Int. Math. Res. Not. IMRN 2023 (2023), no. 14, 12512–12537. 10.1093/imrn/rnac188Suche in Google Scholar

[5] M. Bays, B. Hart and A. Pillay, Universal covers of commutative finite Morley rank groups, J. Inst. Math. Jussieu 19 (2020), no. 3, 767–799. 10.1017/S1474748018000191Suche in Google Scholar

[6] M. Bhattacharjee, D. Macpherson, R. G. Möller and P. M. Neumann, Notes on infinite permutation groups, Lecture Notes in Math. 1698, Springer, Berlin 1997. 10.1007/978-93-80250-91-5Suche in Google Scholar

[7] M. Borovoi, Homogeneous spaces of Hilbert type, Int. J. Number Theory 11 (2015), no. 2, 397–405. 10.1142/S1793042115500207Suche in Google Scholar

[8] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin 1990. 10.1007/978-3-642-51438-8Suche in Google Scholar

[9] N. Bourbaki, Algebré commutative, Springer, Berlin 2006. 10.1007/978-3-540-33976-2Suche in Google Scholar

[10] S. Coccia, The Hilbert property for integral points of affine smooth cubic surfaces, J. Number Theory 200 (2019), 353–379. 10.1016/j.jnt.2018.11.024Suche in Google Scholar

[11] J.-L. Colliot-Thélène and J.-J. Sansuc, Principal homogeneous spaces under flasque tori: Applications, J. Algebra 106 (1987), no. 1, 148–205. 10.1016/0021-8693(87)90026-3Suche in Google Scholar

[12] P. Corvaja, J. L. Demeio, A. Javanpeykar, D. Lombardo and U. Zannier, On the distribution of rational points on ramified covers of abelian varieties, Compos. Math. 158 (2022), no. 11, 2109–2155. 10.1112/S0010437X22007746Suche in Google Scholar

[13] P. Corvaja and U. Zannier, On the Hilbert property and the fundamental group of algebraic varieties, Math. Z. 286 (2017), no. 1–2, 579–602. 10.1007/s00209-016-1775-xSuche in Google Scholar

[14] J. L. Demeio, Non-rational varieties with the Hilbert property, Int. J. Number Theory 16 (2020), no. 4, 803–822. 10.1142/S1793042120500414Suche in Google Scholar

[15] J. L. Demeio, Elliptic fibrations and the Hilbert property, Int. Math. Res. Not. IMRN 2021 (2021), no. 13, 10260–10277. 10.1093/imrn/rnz108Suche in Google Scholar

[16] R. Dvornicich and U. Zannier, Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps), Duke Math. J. 139 (2007), no. 3, 527–554. 10.1215/S0012-7094-07-13934-6Suche in Google Scholar

[17] B. Edixhoven, G. van der Geer and B. Moonen, Abelian varieties, manuscript, http://van-der-geer.nl/~gerard/AV.pdf. Suche in Google Scholar

[18] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure and A. Vistoli, Fundamental algebraic geometry, Math. Surveys Monogr. 123, American Mathematical Society, Providence 2005. 10.1090/surv/123Suche in Google Scholar

[19] A. Fehm, M. Jarden and S. Petersen, Kuykian fields, Forum Math. 24 (2012), no. 5, 1013–1022. 10.1515/form.2011.094Suche in Google Scholar

[20] A. Fehm and S. Petersen, On the rank of abelian varieties over ample fields, Int. J. Number Theory 6 (2010), no. 3, 579–586. 10.1142/S1793042110003071Suche in Google Scholar

[21] A. Fehm and S. Petersen, Hilbertianity of division fields of commutative algebraic groups, Israel J. Math. 195 (2013), no. 1, 123–134. 10.1007/s11856-012-0064-6Suche in Google Scholar

[22] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. Lond. Math. Soc. (3) 28 (1974), 112–128. 10.1112/plms/s3-28.1.112Suche in Google Scholar

[23] M. D. Fried and M. Jarden, Field arithmetic, 3rd ed., Ergeb. Math. Grenzgeb. (3) 11, Springer, Berlin 2008. Suche in Google Scholar

[24] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961), 5–222. 10.1007/BF02699291Suche in Google Scholar

[25] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Publ. Math. Inst. Hautes Études Sci. 20 (1964), 5–259. 10.1007/BF02684747Suche in Google Scholar

[26] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. (1965), no. 24, 5–231. 10.1007/BF02684322Suche in Google Scholar

[27] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes des schémas. III, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 5–361. 10.1007/BF02732123Suche in Google Scholar

[28] A. Grothendieck, Séminaire de géométrie algébrique du Bois-Marie. SGA1 - Revêtements étales et groupe fondamental, Lecture Notes in Math. 224, Springer, Berlin 1971. 10.1007/BFb0058657Suche in Google Scholar

[29] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki. Vol. 6, Société Mathématique de France, Paris (1995), 249–276, Exp. No. 221. Suche in Google Scholar

[30] P. Habegger, Small height and infinite nonabelian extensions, Duke Math. J. 162 (2013), no. 11, 2027–2076. 10.1215/00127094-2331342Suche in Google Scholar

[31] D. Haran, Hilbertian fields under separable algebraic extensions, Invent. Math. 137 (1999), no. 1, 113–126. 10.1007/s002220050325Suche in Google Scholar

[32] B.-H. Im and M. Larsen, Infinite rank of elliptic curves over ab , Acta Arith. 158 (2013), no. 1, 49–59. 10.4064/aa158-1-3Suche in Google Scholar

[33] M. Jarden, Diamonds in torsion of abelian varieties, J. Inst. Math. Jussieu 9 (2010), no. 3, 477–480. 10.1017/S1474748009000255Suche in Google Scholar

[34] A. Javanpeykar, Rational points and ramified covers of products of two elliptic curves, Acta Arith. 198 (2021), no. 3, 275–287. 10.4064/aa200513-3-11Suche in Google Scholar

[35] A. Javanpeykar, Hilbert irreducibility for varieties with a nef tangent bundle, J. Ramanujan Math. Soc., to appear. Suche in Google Scholar

[36] W. Kuyk, Extensions de corps hilbertiens, J. Algebra 14 (1970), 112–124. 10.1016/0021-8693(70)90138-9Suche in Google Scholar

[37] S. Lang, Diophantine geometry, John Wiley & Sons, New York 1962. Suche in Google Scholar

[38] S. Lang, Fundamentals of Diophantine geometry, Springer, New York 1983. 10.1007/978-1-4757-1810-2Suche in Google Scholar

[39] M. Larsen, A Mordell–Weil theorem for abelian varieties over fields generated by torsion points, preprint (2005), https://arxiv.org/abs/math/0503378. Suche in Google Scholar

[40] J. D. P. Meldrum, Wreath products of groups and semigroups, Pitman Monogr. Surv. Pure Appl. Math. 74, Longman, Harlow 1995. Suche in Google Scholar

[41] J. S. Milne, Abelian varieties, Arithmetic geometry, Springer, New York (1986), 103–150. 10.1007/978-1-4613-8655-1_5Suche in Google Scholar

[42] J. S. Milne, Algebraic groups, Cambridge Stud. Adv. Math. 170, Cambridge University, Cambridge 2017. Suche in Google Scholar

[43] D. Mumford, Abelian varieties, Oxford University, London 1970. Suche in Google Scholar

[44] M. Nakahara and S. Streeter, Weak approximation and the Hilbert property for Campana points, preprint (2020), https://arxiv.org/abs/2010.12555. Suche in Google Scholar

[45] S. Petersen, On a question of Frey and Jarden about the rank of abelian varieties, J. Number Theory 120 (2006), no. 2, 287–302. 10.1016/j.jnt.2005.12.006Suche in Google Scholar

[46] F. Sairaiji and T. Yamauchi, The rank of Jacobian varieties over the maximal abelian extensions of number fields: Towards the Frey–Jarden conjecture, Canad. Math. Bull. 55 (2012), no. 4, 842–849. 10.4153/CMB-2011-140-5Suche in Google Scholar

[47] J.-P. Serre, Résumé des cours de 1985-1986, Annuaire du Collège de France, Paris 1986. Suche in Google Scholar

[48] J.-P. Serre, Topics in Galois theory, 2nd ed., Res. Notes in Math. 1, A K Peters, Wellesley 2008. Suche in Google Scholar

[49] J.-P. Serre, Un critère d’indépendance pour une famille de représentations -adiques, Comment. Math. Helv. 88 (2013), no. 3, 541–554. 10.4171/CMH/295Suche in Google Scholar

[50] S. Streeter, Hilbert property for double conic bundles and del Pezzo varieties, Math. Res. Lett. 28 (2021), no. 1, 271–283. 10.4310/MRL.2021.v28.n1.a11Suche in Google Scholar

[51] C. Thornhill, Abelian varieties and Galois extensions of Hilbertian fields, J. Inst. Math. Jussieu 12 (2013), no. 2, 237–247. 10.1017/S1474748012000680Suche in Google Scholar

[52] U. Zannier, Hilbert irreducibility above algebraic groups, Duke Math. J. 153 (2010), no. 2, 397–425. 10.1215/00127094-2010-027Suche in Google Scholar

[53] Y. G. Zarhin, Hyperelliptic Jacobians without complex multiplication, Math. Res. Lett. 7 (2000), no. 1, 123–132. 10.4310/MRL.2000.v7.n1.a11Suche in Google Scholar

[54] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2023. Suche in Google Scholar

Received: 2022-09-24
Revised: 2023-08-17
Published Online: 2023-11-01
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2023-0077/html?lang=de
Button zum nach oben scrollen