Abstract
Let
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-2050037
Funding statement: This research was supported by the National Science Foundation (Grant No. DMS-2050037).
Acknowledgements
We thank Hexi Ye for helpful discussions about this problem. We also thank the anonymous referees for their comments and suggestions.
References
[1] M. Baker and R. Rumely, Potential theory and dynamics on the Berkovich projective line, Math. Surveys Monogr. 159, American Mathematical, Providence 2010. 10.1090/surv/159Suche in Google Scholar
[2] R. L. Benedetto, Wandering domains and nontrivial reduction in non-Archimedean dynamics, Illinois J. Math. 49 (2005), no. 1, 167–193. 10.1215/ijm/1258138313Suche in Google Scholar
[3] R. L. Benedetto, Dynamics in one non-archimedean variable, Grad. Stud. Math. 198, American Mathematical Society, Providence 2019. 10.1090/gsm/198Suche in Google Scholar
[4] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Math. Monogr. 4, Cambridge University, Cambridge 2006. Suche in Google Scholar
[5] G. S. Call and J. H. Silverman, Canonical heights on varieties with morphisms, Compos. Math. 89 (1993), no. 2, 163–205. Suche in Google Scholar
[6] L. DeMarco, Iteration at the boundary of the space of rational maps, Duke Math. J. 130 (2005), no. 1, 169–197. 10.1215/S0012-7094-05-13015-0Suche in Google Scholar
[7] L. DeMarco, The moduli space of quadratic rational maps, J. Amer. Math. Soc. 20 (2007), no. 2, 321–355. 10.1090/S0894-0347-06-00527-3Suche in Google Scholar
[8] L. DeMarco, Bifurcations, intersections, and heights, Algebra Number Theory 10 (2016), no. 5, 1031–1056. 10.2140/ant.2016.10.1031Suche in Google Scholar
[9] L. DeMarco and X. Faber, Degenerations of complex dynamical systems II: Analytic and algebraic stability, Math. Ann. 365 (2016), no. 3–4, 1669–1699. 10.1007/s00208-015-1331-8Suche in Google Scholar
[10] L. DeMarco and D. Ghioca, Rationality of dynamical canonical height, Ergodic Theory Dynam. Systems 39 (2019), no. 9, 2507–2540. 10.1017/etds.2017.131Suche in Google Scholar
[11] L. DeMarco and Y. Okuyama, Discontinuity of a degenerating escape rate, Conform. Geom. Dyn. 22 (2018), 33–44. 10.1090/ecgd/318Suche in Google Scholar
[12] L. DeMarco, X. Wang and H. Ye, Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc. (3) 111 (2015), no. 1, 149–180. 10.1112/plms/pdv024Suche in Google Scholar
[13] L. DeMarco, X. Wang and H. Ye, Torsion points and the Lattès family, Amer. J. Math. 138 (2016), no. 3, 697–732. 10.1353/ajm.2016.0026Suche in Google Scholar
[14] C. Favre and T. Gauthier, Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory 12 (2018), no. 6, 1471–1487. 10.2140/ant.2018.12.1471Suche in Google Scholar
[15] C. Favre and T. Gauthier, The arithmetic of polynomial dynamical pairs, Ann. of Math. Stud. 214, Princeton University, Princeton 2022. 10.1515/9780691235486Suche in Google Scholar
[16] C. Favre and J. Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 116–154. 10.1112/plms/pdp022Suche in Google Scholar
[17] D. Ghioca, L.-C. Hsia and T. J. Tucker, Preperiodic points for families of rational maps, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 395–427. 10.1112/plms/pdu051Suche in Google Scholar
[18] D. Ghioca and N. M. Mavraki, Variation of the canonical height in a family of rational maps, New York J. Math. 19 (2013), 873–907. Suche in Google Scholar
[19] D. Ghioca and H. Ye, A dynamical variant of the André–Oort conjecture, Int. Math. Res. Not. IMRN 2018 (2018), no. 8, 2447–2480. 10.1093/imrn/rnw314Suche in Google Scholar
[20] L.-C. Hsia, A weak Néron model with applications to p-adic dynamical systems, Compos. Math. 100 (1996), no. 3, 277–304. Suche in Google Scholar
[21] P. Ingram, Variation of the canonical height for a family of polynomials, J. reine angew. Math. 685 (2013), 73–97. 10.1515/crelle-2012-0017Suche in Google Scholar
[22] P. Ingram, Variation of the canonical height in a family of polarized dynamical systems, preprint (2021), https://arxiv.org/abs/2104.12877. Suche in Google Scholar
[23] J. Kiwi, Puiseux series dynamics of quadratic rational maps, Israel J. Math. 201 (2014), no. 2, 631–700. 10.1007/s11856-014-1047-6Suche in Google Scholar
[24] S. Lang, Fundamentals of Diophantine geometry, Springer, New York 1983. 10.1007/978-1-4757-1810-2Suche in Google Scholar
[25]
N. M. Mavraki and H. Ye,
Quasi-adelic measures and equidistriution on
[26] C. Petsche, S-integral preperiodic points by dynamical systems over number fields, Bull. Lond. Math. Soc. 40 (2008), no. 5, 749–758. 10.1112/blms/bdn053Suche in Google Scholar
[27] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Geometric methods in dynamics. II, Astérisque 287, Société Mathématique de France, Paris (2003), 147–230. Suche in Google Scholar
[28] J. H. Silverman, Variation of the canonical height on elliptic surfaces. I. Three examples, J. reine angew. Math. 426 (1992), 151–178. 10.1515/crll.1992.426.151Suche in Google Scholar
[29] J. H. Silverman, Variation of the canonical height on elliptic surfaces. II. Local analyticity properties, J. Number Theory 48 (1994), no. 3, 291–329. 10.1006/jnth.1994.1069Suche in Google Scholar
[30] J. H. Silverman, Variation of the canonical height on elliptic surfaces. III. Global boundedness properties, J. Number Theory 48 (1994), no. 3, 330–352. 10.1006/jnth.1994.1070Suche in Google Scholar
[31] J. H. Silverman, The arithmetic of dynamical systems, Grad. Texts in Math. 241, Springer, New York 2007. 10.1007/978-0-387-69904-2Suche in Google Scholar
[32] J. Tate, Variation of the canonical height of a point depending on a parameter, Amer. J. Math. 105 (1983), no. 1, 287–294. 10.2307/2374389Suche in Google Scholar
[33] E. Trucco, Wandering Fatou components and algebraic Julia sets, Bull. Soc. Math. France 142 (2014), no. 3, 411–464. 10.24033/bsmf.2670Suche in Google Scholar
[34] A. Weil, Arithmetic on algebraic varieties, Ann. of Math. (2) 53 (1951), 412–444. 10.2307/1969564Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Squarefrees are Gaussian in short intervals
- Effective generation for foliated surfaces: Results and applications
- Uniqueness of compact ancient solutions to the higher-dimensional Ricci flow
- Shuffle algebras for quivers and wheel conditions
- Variation of canonical height for\break Fatou points on ℙ1
- Failure of strong unique continuation for harmonic functions on RCD spaces
- The relative Bogomolov conjecture for fibered products of elliptic curves
- q-opers, QQ-systems, and Bethe Ansatz II: Generalized minors
Artikel in diesem Heft
- Frontmatter
- Squarefrees are Gaussian in short intervals
- Effective generation for foliated surfaces: Results and applications
- Uniqueness of compact ancient solutions to the higher-dimensional Ricci flow
- Shuffle algebras for quivers and wheel conditions
- Variation of canonical height for\break Fatou points on ℙ1
- Failure of strong unique continuation for harmonic functions on RCD spaces
- The relative Bogomolov conjecture for fibered products of elliptic curves
- q-opers, QQ-systems, and Bethe Ansatz II: Generalized minors