Abstract
We show that if
Funding source: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Award Identifier / Grant number: 639.033.514
Award Identifier / Grant number: 016.Veni.192.113
Award Identifier / Grant number: 200021_191981
Funding statement: Jan Draisma was partially supported by Vici grant 639.033.514 from the Netherlands Organisation for Scientific Research (NWO) and Project Grant 200021_191981 from the Swiss National Science Foundation (SNF). Azhar Farooq was supported by Vici grant 639.033.514. Rob Eggermont was supported by Veni grant 016.Veni.192.113 from NWO.
References
[1] M. Aschenbrenner and C. J. Hillar, Finite generation of symmetric ideals, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5171–5192. 10.1090/S0002-9947-07-04116-5Search in Google Scholar
[2] A. Bik, J. Draisma, R. H. Eggermont and A. Snowden, The geometry of polynomial representations, preprint (2021), https://arxiv.org/abs/2105.12621; to appear in Int. Math. Res. Not. IMRN. 10.1093/imrn/rnac220Search in Google Scholar
[3] A. E. Brouwer and J. Draisma, Equivariant Gröbner bases and the Gaussian two-factor model, Math. Comp. 80 (2011), no. 274, 1123–1133. 10.1090/S0025-5718-2010-02415-9Search in Google Scholar
[4] T. Church, J. S. Ellenberg and B. Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910. 10.1215/00127094-3120274Search in Google Scholar
[5] T. Church, J. S. Ellenberg, B. Farb and R. Nagpal, FI-modules over Noetherian rings, Geom. Topol. 18 (2014), no. 5, 2951–2984. 10.2140/gt.2014.18.2951Search in Google Scholar
[6] D. E. Cohen, On the laws of a metabelian variety, J. Algebra 5 (1967), 267–273. 10.1016/0021-8693(67)90039-7Search in Google Scholar
[7] D. E. Cohen, Closure relations. Buchberger’s algorithm, and polynomials in infinitely many variables, Computation theory and logic, Lecture Notes in Comput. Sci. 270, Springer, Berlin (1987), 78–87. 10.1007/3-540-18170-9_156Search in Google Scholar
[8] J. Draisma, Finiteness for the k-factor model and chirality varieties, Adv. Math. 223 (2010), no. 1, 243–256. 10.1016/j.aim.2009.08.008Search in Google Scholar
[9] J. Draisma, Topological Noetherianity of polynomial functors, J. Amer. Math. Soc. 32 (2019), no. 3, 691–707. 10.1090/jams/923Search in Google Scholar
[10] J. Draisma, R. H. Eggermont, R. Krone and A. Leykin, Noetherianity for infinite-dimensional toric varieties, Algebra Number Theory 9 (2016), no. 8, 1857–1880. 10.2140/ant.2015.9.1857Search in Google Scholar
[11] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, New York 1995. 10.1007/978-1-4612-5350-1Search in Google Scholar
[12] S. Güntürkün and U. Nagel, Equivariant Hilbert series of monomial orbits, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2381–2393. 10.1090/proc/13943Search in Google Scholar
[13] C. J. Hillar, R. Krone and A. Leykin, EquivariantGB Macaulay2 package, (2013), http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.18/share/doc/Macaulay2/EquivariantGB/html/index.html. Search in Google Scholar
[14] C. J. Hillar and S. Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (2012), no. 1, 1–25. 10.1016/j.aim.2011.08.009Search in Google Scholar
[15] A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), no. 1, 1–82. 10.1016/0001-8708(81)90052-9Search in Google Scholar
[16] M. Juhnke-Kubitzke, D. V. Le and T. Römer, Asymptotic behavior of symmetric ideals: A brief survey, Combinatorial structures in algebra and geometry, Springer Proc. Math. Stat. 331, Springer, Cham (2020), 73–94. 10.1007/978-3-030-52111-0_7Search in Google Scholar
[17] R. Krone, A. Leykin and A. Snowden, Hilbert series of symmetric ideals in infinite polynomial rings via formal languages, J. Algebra 485 (2017), 353–362. 10.1016/j.jalgebra.2017.05.014Search in Google Scholar
[18] M. Kummer and C. Riener, Equivariant algebraic and semi-algebraic geometry of infinite affine space, preprint (2022), https://arxiv.org/abs/2203.11921 Search in Google Scholar
[19] D. V. Le, U. Nagel, H. D. Nguyen and T. Römer, Codimension and projective dimension up to symmetry, Math. Nachr. 293 (2020), no. 2, 346–362. 10.1002/mana.201800413Search in Google Scholar
[20] D. V. Le, U. Nagel, H. D. Nguyen and T. Römer, Castelnuovo–Mumford regularity up to symmetry, Int. Math. Res. Not. IMRN 2021 (2021), no. 14, 11010–11049. 10.1093/imrn/rnz382Search in Google Scholar
[21] U. Nagel, Rationality of equivariant Hilbert series and asymptotic properties, Trans. Amer. Math. Soc. 374 (2021), no. 10, 7313–7357. 10.1090/tran/8447Search in Google Scholar
[22] U. Nagel and T. Römer, Equivariant Hilbert series in non-noetherian polynomial rings, J. Algebra 486 (2017), 204–245. 10.1016/j.jalgebra.2017.05.011Search in Google Scholar
[23] U. Nagel and T. Römer, FI- and OI-modules with varying coefficients, J. Algebra 535 (2019), 286–322. 10.1016/j.jalgebra.2019.06.029Search in Google Scholar
[24] R. Nagpal and A. Snowden, Symmetric subvarieties of infinite affine space, preprint (2020), https://arxiv.org/abs/2011.09009. Search in Google Scholar
[25] S. V. Sam and A. Snowden, Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017), no. 1, 159–203. 10.1090/jams/859Search in Google Scholar
[26] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982), no. 2, 175–193. 10.1007/BF01394054Search in Google Scholar
[27] R. P. Stanley, Enumerative combinatorics. Vol. 1. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original, Cambridge Stud. Adv. Math. 49, Cambridge University Press, Cambridge 1997 Search in Google Scholar
[28] The Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2020. Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Kähler–Einstein metrics with prescribed singularities on Fano manifolds
- Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy
- Hermitian K-theory via oriented Gorenstein algebras
- Components of symmetric wide-matrix varieties
- Tangent curves to degenerating hypersurfaces
- Local noncollapsing for complex Monge–Ampère equations
- Entropy bounds, compactness and finiteness theorems for embedded self-shrinkers with rotational symmetry
- Hitting estimates on Einstein manifolds and applications
- Special values of L-functions of one-motives over function fields
Articles in the same Issue
- Frontmatter
- Kähler–Einstein metrics with prescribed singularities on Fano manifolds
- Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy
- Hermitian K-theory via oriented Gorenstein algebras
- Components of symmetric wide-matrix varieties
- Tangent curves to degenerating hypersurfaces
- Local noncollapsing for complex Monge–Ampère equations
- Entropy bounds, compactness and finiteness theorems for embedded self-shrinkers with rotational symmetry
- Hitting estimates on Einstein manifolds and applications
- Special values of L-functions of one-motives over function fields