Home Kähler–Einstein metrics with prescribed singularities on Fano manifolds
Article
Licensed
Unlicensed Requires Authentication

Kähler–Einstein metrics with prescribed singularities on Fano manifolds

  • Antonio Trusiani ORCID logo EMAIL logo
Published/Copyright: September 29, 2022

Abstract

Given a Fano manifold ( X , ω ) , we develop a variational approach to characterize analytically the existence of Kähler–Einstein metrics with prescribed singularities, assuming that these singularities can be approximated algebraically. Moreover, we define a function α ω on the set of prescribed singularities which generalizes Tian’s α-invariant, showing that its upper lever set { α ω ( ) > n n + 1 } produces a subset of the Kähler–Einstein locus, i.e. of the locus given by all prescribed singularities that admit Kähler–Einstein metrics. In particular, we prove that many K-stable manifolds admit all possible Kähler–Einstein metrics with prescribed singularities. Conversely, we show that enough positivity of the α-invariant function at nontrivial prescribed singularities (or other conditions) implies the existence of genuine Kähler–Einstein metrics. Finally, through a continuity method we also prove the strong continuity of Kähler–Einstein metrics on curves of totally ordered prescribed singularities when the relative automorphism groups are discrete.

Funding statement: The author is supported by a postdoctoral grant of the Knut and Alice Wallenberg Foundation.

Acknowledgements

I would like to thank my PhD advisors Stefano Trapani and David Witt Nyström for their comments.

References

[1] T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek and T. Szemberg, A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry, Contemp. Math. 496, American Mathematical Society, Providence (2009), 33–70. 10.1090/conm/496/09718Search in Google Scholar

[2] R. J. Berman, A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics, Adv. Math. 248 (2013), 1254–1297. 10.1016/j.aim.2013.08.024Search in Google Scholar

[3] R. J. Berman, K-polystability of -Fano varieties admitting Kähler–Einstein metrics, Invent. Math. 203 (2016), no. 3, 973–1025. 10.1007/s00222-015-0607-7Search in Google Scholar

[4] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. reine angew. Math. 751 (2019), 27–89. 10.1515/crelle-2016-0033Search in Google Scholar

[5] R. J. Berman, S. Boucksom, V. Guedj and A. Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245. 10.1007/s10240-012-0046-6Search in Google Scholar

[6] R. J. Berman, S. Boucksom and M. Jonsson, A variational approach to the Yau–Tian–Donaldson conjecture, J. Amer. Math. Soc. 34 (2021), no. 3, 605–652. 10.1090/jams/964Search in Google Scholar

[7] B. Berndtsson, A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math. 200 (2015), no. 1, 149–200. 10.1007/s00222-014-0532-1Search in Google Scholar

[8] Z. Bł ocki and S. Koł odziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. 10.1090/S0002-9939-07-08858-2Search in Google Scholar

[9] S. Boucksom, Cônes positifs des variétés complexes compactes, PhD thesis, Université Joseph-Fourier-Grenoble I, 2002. Search in Google Scholar

[10] S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199–262. 10.1007/s11511-010-0054-7Search in Google Scholar

[11] S. Boucksom, C. Favre and M. Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449–494. 10.2977/prims/1210167334Search in Google Scholar

[12] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), no. 4, 1118–1144. 10.1007/s00039-008-0687-2Search in Google Scholar

[13] X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. IMRN 2000 (2000), no. 12, 607–623. 10.1155/S1073792800000337Search in Google Scholar

[14] X. Chen, S. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. 10.1090/S0894-0347-2014-00799-2Search in Google Scholar

[15] T. Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182–219. 10.1016/j.aim.2015.08.005Search in Google Scholar

[16] T. Darvas, The Mabuchi completion of the space of Kähler potentials, Amer. J. Math. 139 (2017), no. 5, 1275–1313. 10.1353/ajm.2017.0032Search in Google Scholar

[17] T. Darvas, E. Di Nezza and C. H. Lu, L 1 metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 7, 3053–3086. 10.5802/aif.3236Search in Google Scholar

[18] T. Darvas, E. Di Nezza and C. H. Lu, Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE 11 (2018), no. 8, 2049–2087. 10.2140/apde.2018.11.2049Search in Google Scholar

[19] T. Darvas, E. Di Nezza and C. H. Lu, On the singularity type of full mass currents in big cohomology classes, Compos. Math. 154 (2018), no. 2, 380–409. 10.1112/S0010437X1700759XSearch in Google Scholar

[20] T. Darvas, E. Di Nezza and C. H. Lu, Log-concavity of volume and complex Monge–Ampère equations with prescribed singularity, Math. Ann. 379 (2021), no. 1–2, 95–132. 10.1007/s00208-019-01936-ySearch in Google Scholar

[21] T. Darvas, E. Di Nezza and H.-C. Lu, The metric geometry of singularity types, J. reine angew. Math. 771 (2021), 137–170. 10.1515/crelle-2020-0019Search in Google Scholar

[22] T. Darvas and Y. A. Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017), no. 2, 347–387. 10.1090/jams/873Search in Google Scholar

[23] T. Darvas and M. Xia, The closures of test configurations and algebraic singularity types, Adv. Math. 397 (2022), Paper No. 108198. 10.1016/j.aim.2022.108198Search in Google Scholar

[24] J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409. Search in Google Scholar

[25] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth 1990), Lecture Notes in Math. 1507, Springer, Berlin (1992), 87–104. 10.1007/BFb0094512Search in Google Scholar

[26] J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), no. 4, 525–556. 10.1016/S0012-9593(01)01069-2Search in Google Scholar

[27] J.-P. Demailly, T. Peternell and M. Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. 10.1142/S0129167X01000861Search in Google Scholar

[28] K. Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math. 59 (2019), no. 2, 399–418. 10.1215/21562261-2019-0012Search in Google Scholar

[29] Q. Guan and X. Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. 10.4007/annals.2015.182.2.5Search in Google Scholar

[30] V. Guedj and A. Zeriahi, Degenerate complex Monge–Ampère equations, EMS Tracts Math. 26, European Mathematical Society, Zürich 2017. 10.4171/167Search in Google Scholar

[31] H. Guenancia and M. Păun, Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors, J. Differential Geom. 103 (2016), no. 1, 15–57. 10.4310/jdg/1460463562Search in Google Scholar

[32] T. Jeffres, R. Mazzeo and Y. A. Rubinstein, Kähler–Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95–176. 10.4007/annals.2016.183.1.3Search in Google Scholar

[33] J. Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, American Mathematical Society, Providence (1997), 221–287. 10.1090/pspum/062.1/1492525Search in Google Scholar

[34] J. Kollár, Singularities of the minimal model program, Cambridge Tracts in Math. 200, Cambridge University, Cambridge 2013. 10.1017/CBO9781139547895Search in Google Scholar

[35] S. Koł odziej, The complex Monge–Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. 10.1007/BF02392879Search in Google Scholar

[36] A. Küronya and V. Lozovanu, Infinitesimal Newton–Okounkov bodies and jet separation, Duke Math. J. 166 (2017), no. 7, 1349–1376. 10.1215/00127094-0000002XSearch in Google Scholar

[37] R. Lazarsfeld, Positivity in algebraic geometry. I: Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3) 48, Springer, Berlin 2004. 10.1007/978-3-642-18808-4_4Search in Google Scholar

[38] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835. 10.24033/asens.2109Search in Google Scholar

[39] T. Mabuchi, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575–593. 10.2748/tmj/1178228410Search in Google Scholar

[40] A. V. Pukhlikov, Birational geometry of Fano direct products, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 6, 153–186. 10.1070/IM2005v069n06ABEH002300Search in Google Scholar

[41] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts 28, Cambridge University, Cambridge 1995. 10.1017/CBO9780511623776Search in Google Scholar

[42] R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286. 10.1007/BF02063212Search in Google Scholar

[43] J. Ross and D. Witt Nyström, Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014), no. 1, 125–169. 10.4310/JSG.2014.v12.n1.a5Search in Google Scholar

[44] Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53–156. 10.1007/BF01389965Search in Google Scholar

[45] H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans 𝐂 n , Bull. Soc. Math. France 100 (1972), 353–408. 10.24033/bsmf.1743Search in Google Scholar

[46] G. Tian, On Kähler–Einstein metrics on certain Kähler manifolds with C 1 ( M ) & g t ; 0 , Invent. Math. 89 (1987), no. 2, 225–246. 10.1007/BF01389077Search in Google Scholar

[47] G. Tian, Canonical metrics in Kähler geometry, Lectures in Math. ETH Zürich, Birkhäuser, Basel 2000. 10.1007/978-3-0348-8389-4Search in Google Scholar

[48] V. Tosatti, Kähler–Einstein metrics on Fano surfaces, Expo. Math. 30 (2012), no. 1, 11–31. 10.1016/j.exmath.2011.07.003Search in Google Scholar

[49] A. Trusiani, Continuity method with movable singularities for classical Monge–Ampère equations, preprint (2020), https://arxiv.org/abs/2006.09120; to appear in Indiana Univ. Math. J. Search in Google Scholar

[50] A. Trusiani, The strong topology of ω-plurisubharmonic functions, preprint (2020), https://arxiv.org/abs/2002.00665; to appear in Anal. PDE. Search in Google Scholar

[51] A. Trusiani, Multipoint Okounkov bodies, Ann. Inst. Fourier (Grenoble) 71 (2021), no. 6, 2595–2646. 10.5802/aif.3462Search in Google Scholar

[52] A. Trusiani, L 1 metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal. 32 (2022), no. 2, Paper No. 37. 10.1007/s12220-021-00779-xSearch in Google Scholar

[53] D. Witt Nyström, Monotonicity of non-pluripolar Monge–Ampère masses, Indiana Univ. Math. J. 68 (2019), no. 2, 579–591. 10.1512/iumj.2019.68.7630Search in Google Scholar

[54] M. Xia, Mabuchi geometry of big cohomology classes with prescribed singularities, preprint (2019), https://arxiv.org/abs/1907.07234. Search in Google Scholar

[55] S.-T. Yau, Open problems in geometry, Differential geometry: Partial differential equations on manifolds, Proc. Sympos. Pure Math. 54, American Mathematical Society, Providence (1993), 1–28. 10.1090/pspum/054.1/1216573Search in Google Scholar

[56] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J. 50 (2001), no. 1, 671–703. 10.1512/iumj.2001.50.2062Search in Google Scholar

[57] K. Zhang, A quantization proof of the uniform Yau–Tian–Donaldson conjecture, preprint (2021), https://arxiv.org/abs/2102.02438. Search in Google Scholar

Received: 2021-02-14
Revised: 2022-04-26
Published Online: 2022-09-29
Published in Print: 2022-12-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2022-0047/html
Scroll to top button