Startseite Asymptotic topology of excursion and nodal sets of Gaussian random fields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic topology of excursion and nodal sets of Gaussian random fields

  • Damien Gayet ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. Juli 2022

Abstract

Let M be a compact smooth manifold of dimension n with or without boundary, or an affine polytope, and let f : M be a smooth Gaussian random field. It is very natural to suppose that for a large positive real u, the random excursion set { f u } is mostly composed of a union of disjoint topological n-balls. Using the constructive part of (stratified) Morse theory, we prove that in average, this intuition is true, and provide for large u the asymptotic of the expected number of such balls, and so of connected components of { f u } . We similarly show that in average, the high nodal sets { f = u } are mostly composed of spheres, with the same asymptotic than the one for excursion set. A quantitative refinement of these results using the average of the Euler characteristic proved in former works by Adler and Taylor provides a striking asymptotic of the constant defined by Nazarov and Sodin, again for large u. This new Morse theoretical approach of random topology also applies to spherical spin glasses with large dimension.

Award Identifier / Grant number: ANR-15CE40-0007-01

Award Identifier / Grant number: ANR-20-CE40-0017

Funding statement: The research leading to these results has received funding from the French Agence nationale de la recherche, ANR-15CE40-0007-01 (Microlocal) and ANR-20-CE40-0017 (Adyct).

Acknowledgements

The author thanks Antonio Auffinger for his valuable expertise about [6] and the first part of the proof of Theorem 1.8, François Laudenbach for the part of Remark 5.16 concerning manifolds with boundary, and the referee for his comments which helped to improve this paper.

References

[1] R. J. Adler and A. M. Hasofer, Level crossings for random fields, Ann. Probab. 4 (1976), no. 1, 1–12. 10.1214/aop/1176996176Suche in Google Scholar

[2] R. J. Adler and J. E. Taylor, Random fields and geometry, Springer Monogr. Math., Springer, New York 2009. Suche in Google Scholar

[3] R. J. Adler, J. E. Taylor and K. J. Worsley, Applications of random fields and geometry: Foundations and case studies, to appear. Suche in Google Scholar

[4] M. Ancona, Exponential rarefaction of maximal real algebraic hypersurfaces, preprint (2020), https://arxiv.org/abs/2009.11951; to appear in J. Eur. Math. Soc. (JEMS). 10.4171/JEMS/1311Suche in Google Scholar

[5] G. W. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices, Cambridge Stud. Adv. Math. 118, Cambridge University, Cambridge 2010. 10.1017/CBO9780511801334Suche in Google Scholar

[6] A. Auffinger, G. Ben Arous and J. Černý, Random matrices and complexity of spin glasses, Comm. Pure Appl. Math. 66 (2013), no. 2, 165–201. 10.1002/cpa.21422Suche in Google Scholar

[7] D. Beliaev, M. McAuley and S. Muirhead, Fluctuations of the number of excursion sets of planar Gaussian fields, preprint (2019), https://arxiv.org/abs/1908.10708. 10.2140/pmp.2022.3.105Suche in Google Scholar

[8] D. Beliaev, M. McAuley and S. Muirhead, On the number of excursion sets of planar Gaussian fields, Probab. Theory Related Fields 178 (2020), no. 3–4, 655–698. 10.1007/s00440-020-00984-9Suche in Google Scholar

[9] D. Braess, Morse-Theorie für berandete Mannigfaltigkeiten, Math. Ann. 208 (1974), 133–148. 10.1007/BF01432381Suche in Google Scholar

[10] Y. Canzani and P. Sarnak, Topology and nesting of the zero set components of monochromatic random waves, Comm. Pure Appl. Math. 72 (2019), no. 2, 343–374. 10.1002/cpa.21795Suche in Google Scholar

[11] D. N. Diatta and A. Lerario, Low-degree approximation of random polynomials, Found. Comput. Math. 22 (2022), no. 1, 77–97. 10.1007/s10208-021-09506-ySuche in Google Scholar

[12] A. Estrade and J. R. León, A central limit theorem for the Euler characteristic of a Gaussian excursion set, Ann. Probab. 44 (2016), no. 6, 3849–3878. 10.1214/15-AOP1062Suche in Google Scholar

[13] D. Gayet and J.-Y. Welschinger, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes Études Sci. 2011 (2011), no. 113, 69–96. 10.1007/s10240-011-0033-3Suche in Google Scholar

[14] D. Gayet and J.-Y. Welschinger, Lower estimates for the expected Betti numbers of random real hypersurfaces, J. Lond. Math. Soc. (2) 90 (2014), no. 1, 105–120. 10.1112/jlms/jdu018Suche in Google Scholar

[15] D. Gayet and J.-Y. Welschinger, What is the total Betti number of a random real hypersurface?, J. reine angew. Math. 689 (2014), 137–168. 10.1515/crelle-2012-0062Suche in Google Scholar

[16] D. Gayet and J.-Y. Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 733–772. 10.4171/JEMS/601Suche in Google Scholar

[17] D. Gayet and J.-Y. Welschinger, Universal components of random nodal sets, Comm. Math. Phys. 347 (2016), no. 3, 777–797. 10.1007/s00220-016-2595-xSuche in Google Scholar

[18] D. Gayet and J.-Y. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. 21 (2017), no. 5, 811–839. 10.4310/AJM.2017.v21.n5.a2Suche in Google Scholar

[19] M. Goresky and R. MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. (3) 14, Springer, Berlin 1988. 10.1007/978-3-642-71714-7Suche in Google Scholar

[20] M. Ingremeau and A. Rivera, A lower bound for the Bogomolny–Schmit constant for random monochromatic plane waves, Math. Res. Lett. 26 (2019), no. 4, 1179–1186. 10.4310/MRL.2019.v26.n4.a9Suche in Google Scholar

[21] A. Jankowski and R. Rubinsztein, Functions with non-degenerate critical points on manifolds with boundary, Comment. Math. Prace Mat. 16 (1972), 99–112. Suche in Google Scholar

[22] A. Knauf and N. Martynchuk, Topology change of level sets in Morse theory, Ark. Mat. 58 (2020), no. 2, 333–356. 10.4310/ARKIV.2020.v58.n2.a6Suche in Google Scholar

[23] F. Laudenbach, A Morse complex on manifolds with boundary, Geom. Dedicata 153 (2011), 47–57. 10.1007/s10711-010-9555-ySuche in Google Scholar

[24] A. Lerario and E. Lundberg, Statistics on Hilbert’s 16th problem, Int. Math. Res. Not. IMRN 2015 (2015), no. 12, 4293–4321. 10.1093/imrn/rnu069Suche in Google Scholar

[25] A. Lerario and E. Lundberg, Gap probabilities and Betti numbers of a random intersection of quadrics, Discrete Comput. Geom. 55 (2016), no. 2, 462–496. 10.1007/s00454-015-9741-7Suche in Google Scholar

[26] T. Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal. 270 (2016), no. 8, 3047–3110. 10.1016/j.jfa.2016.01.007Suche in Google Scholar

[27] S. Lojasiewicz, Ensembles semi-analytiques, IHÉS notes, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, 1965. Suche in Google Scholar

[28] M. S. Longuet-Higgins, Statistical properties of a moving wave-form, Proc. Cambridge Philos. Soc. 52 (1956), 234–245. 10.1017/S0305004100031224Suche in Google Scholar

[29] T. L. Malevič, Contours that arise when the zero level is crossed by Gaussian fields, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 16 (1972), no. 5, 20–23, 67. Suche in Google Scholar

[30] J. C. Maxwell, On hills and dales, London Edinburgh Dublin Philos. Mag. J. Sci. 40 (1870), no. 269, 421–427. 10.1017/CBO9780511710377.018Suche in Google Scholar

[31] J. Milnor, Morse theory, Ann. of Math. Stud. 51, Princeton University, Princeton 1963. 10.1515/9781400881802Suche in Google Scholar

[32] A. F. Möbius, Theorie der elementaren Verwandtschaft, Ber. Verhandl. Königl. Sächsischen Gesell. Wiss. Math. Phys. Klasse 15 (1863), 19–57. Suche in Google Scholar

[33] F. Nazarov and M. Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337–1357. 10.1353/ajm.0.0070Suche in Google Scholar

[34] F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom. 12 (2016), no. 3, 205–278. 10.15407/mag12.03.205Suche in Google Scholar

[35] F. Nazarov and M. Sodin, Fluctuations in the number of nodal domains, J. Math. Phys. 61 (2020), no. 12, Article ID 123302. 10.1063/5.0018588Suche in Google Scholar

[36] L. I. Nicolaescu, Critical sets of random smooth functions on compact manifolds, Asian J. Math. 19 (2015), no. 3, 391–432. 10.4310/AJM.2015.v19.n3.a2Suche in Google Scholar

[37] M. J. Pflaum, Analytic and geometric study of stratified spaces, Lecture Notes in Math. 1768, Springer, Berlin 2001. Suche in Google Scholar

[38] P. Pranav, Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals, Monthly Notices Roy. Astronom. Soc. 485 (2019), no. 3, 4167–4208. 10.1093/mnras/stz541Suche in Google Scholar

[39] F. Reech, Démonstration d’une propriété générale des surfaces fermées, J. Éc. Polytech. 37 (1858), 169–178. Suche in Google Scholar

[40] A. Rivera and H. Vanneuville, Quasi-independence for nodal lines, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), no. 3, 1679–1711. 10.1214/18-AIHP931Suche in Google Scholar

[41] P. Sarnak and I. Wigman, Topologies of nodal sets of random band-limited functions, Comm. Pure Appl. Math. 72 (2019), no. 2, 275–342. 10.1090/conm/664/13040Suche in Google Scholar

[42] B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–683. 10.1007/s002200050544Suche in Google Scholar

[43] P. Swerling, Statistical properties of the contours of random surfaces, IRE Trans. 8 (1962), 315–321. 10.1109/TIT.1962.1057724Suche in Google Scholar

[44] R. van de Weygaert, G. Vegter, H. Edelsbrunner, B. J. T. Jones, P. Pranav, C. Park, W. A. Hellwing, B. Eldering, N. Kruithof, E. G. P. Bos, J. Hidding, J. Feldbrugge, E. ten Have, M. van Engelen, M. Caroli and M. Teillaud, Alpha, Betti and the Megaparsec Universe: On the topology of the cosmic web, Transactions on computational science. XIV, Lecture Notes in Comput. Sci. 6970, Springer, Heidelberg (2011), 60–101. 10.1007/978-3-642-25249-5_3Suche in Google Scholar

[45] I. Wigman, On the expected Betti numbers of the nodal set of random fields, Anal. PDE 14 (2021), no. 6, 1797–1816. 10.2140/apde.2021.14.1797Suche in Google Scholar

Received: 2021-10-19
Revised: 2022-03-18
Published Online: 2022-07-28
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2022-0027/html?lang=de
Button zum nach oben scrollen