Abstract
We prove that the K-moduli space of cubic fourfolds is identical to their GIT moduli space. More precisely, the K-(semi/poly)stability of cubic fourfolds coincide to the corresponding GIT stabilities, which was studied in detail by Laza. In particular, this implies that all smooth cubic fourfolds admit Kähler–Einstein metrics. Key ingredients are local volume estimates in dimension three due to Liu and Xu, and Ambro–Kawamata’s non-vanishing theorem for Fano fourfolds.
Funding source: National Science Foundation
Award Identifier / Grant number: 2148266
Funding statement: The author was partially supported by the NSF Grant No. 2148266 (transferred from NSF Grant No. DMS-2001317).
Acknowledgements
I would like to thank Chenyang Xu and Ziquan Zhuang for fruitful discussions and helpful comments on a draft, including Remark 4.8 and a simplification of the proof of Proposition 4.6. I would like to thank Kento Fujita, Chen Jiang, Zhiyuan Li, Linquan Ma, Yuji Odaka, Giulia Saccà, Cristiano Spotti, and Gang Tian for helpful discussions and comments.
References
[1] H. Abban and Z. Zhuang, K-stability of Fano varieties via admissible flags, preprint (2020), https://arxiv.org/abs/2003.13788. 10.1017/fmp.2022.11Suche in Google Scholar
[2] J. Alper, H. Blum, D. Halpern-Leistner and C. Xu, Reductivity of the automorphism group of K-polystable Fano varieties, Invent. Math. 222 (2020), no. 3, 995–1032. 10.1007/s00222-020-00987-2Suche in Google Scholar
[3] F. Ambro, Ladders on Fano varieties, J. Math. Sci. (N. Y.) 94 (1999), no. 1, 1126–1135. 10.1007/BF02367253Suche in Google Scholar
[4] C. Arezzo, A. Ghigi and G. P. Pirola, Symmetries, quotients and Kähler–Einstein metrics, J. reine angew. Math. 591 (2006), 177–200. 10.1515/CRELLE.2006.018Suche in Google Scholar
[5] K. Ascher, K. DeVleming and Y. Liu, Wall crossing for K-moduli spaces of plane curves, preprint (2019), https://arxiv.org/abs/1909.04576. Suche in Google Scholar
[6] K. Ascher, K. DeVleming and Y. Liu, K-moduli of curves on a quadric surface and K3 surfaces, preprint (2020), https://arxiv.org/abs/2006.06816; to appear in J. Inst. Math. Jussieu. 10.1017/S1474748021000384Suche in Google Scholar
[7] K. Ascher, K. DeVleming and Y. Liu, K-stability and birational models of moduli of quartic K3 surfaces, preprint (2021), https://arxiv.org/abs/2108.06848. 10.1007/s00222-022-01170-5Suche in Google Scholar
[8]
R. J. Berman,
K-polystability of
[9] R. J. Berman, S. Boucksom and M. Jonsson, A variational approach to the Yau–Tian–Donaldson conjecture, J. Amer. Math. Soc. 34 (2021), no. 3, 605–652. 10.1090/jams/964Suche in Google Scholar
[10] H. Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. 10.1112/S0010437X17008016Suche in Google Scholar
[11] H. Blum, D. Halpern-Leistner, Y. Liu and C. Xu, On properness of K-moduli spaces and optimal degenerations of Fano varieties, Selecta Math. (N. S.) 27 (2021), no. 4, Paper No. 73. 10.1007/s00029-021-00694-7Suche in Google Scholar
[12]
H. Blum and Y. Liu,
Openness of uniform K-stability in families of
[13] H. Blum, Y. Liu and C. Xu, Openness of K-semistability for Fano varieties, preprint (2019), https://arxiv.org/abs/1907.02408; to appear in Duke Math. J. 10.1215/00127094-2022-0054Suche in Google Scholar
[14] H. Blum and M. Jonsson, Thresholds, valuations, and K-stability, Adv. Math. 365 (2020), Article ID 107062. 10.1016/j.aim.2020.107062Suche in Google Scholar
[15] H. Blum and Y. Liu, The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 4, 1225–1256. 10.4171/JEMS/1032Suche in Google Scholar
[16] H. Blum and C. Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 609–656. 10.4007/annals.2019.190.2.4Suche in Google Scholar
[17] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math. 39, Cambridge University, Cambridge 1993. Suche in Google Scholar
[18] I. A. Cheltsov, Log canonical thresholds on hypersurfaces, Mat. Sb. 192 (2001), no. 8, 155–172. 10.1070/SM2001v192n08ABEH000591Suche in Google Scholar
[19] I. A. Cheltsov and D. Park, Global log-canonical thresholds and generalized Eckardt points, Mat. Sb. 193 (2002), no. 5, 149–160. 10.4213/sm656Suche in Google Scholar
[20] X. Chen, S. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. 10.1090/S0894-0347-2014-00799-2Suche in Google Scholar
[21]
X. Chen, S. Donaldson and S. Sun,
Kähler–Einstein metrics on Fano manifolds. II: Limits with cone angle less than
[22]
X. Chen, S. Donaldson and S. Sun,
Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches
[23] G. Codogni and Z. Patakfalvi, Positivity of the CM line bundle for families of K-stable klt Fano varieties, Invent. Math. 223 (2021), no. 3, 811–894. 10.1007/s00222-020-00999-ySuche in Google Scholar
[24] T. de Fernex, L. Ein and M. Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties, EMS Ser. Congr. Rep., European Mathematicak Society, Zürich (2011), 221–257. 10.4171/007-1/10Suche in Google Scholar
[25] T. de Fernex and C. D. Hacon, Deformations of canonical pairs and Fano varieties, J. reine angew. Math. 651 (2011), 97–126. 10.1515/crelle.2011.010Suche in Google Scholar
[26] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. 10.4310/jdg/1090950195Suche in Google Scholar
[27] L. Ein, R. Lazarsfeld and K. E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. 10.1353/ajm.2003.0010Suche in Google Scholar
[28] D. Eisenbud and J. Harris, On varieties of minimal degree (a centennial account), Algebraic geometry (Brunswick/Maine 1985), Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence (1987), 3–13. 10.1090/pspum/046.1/927946Suche in Google Scholar
[29] K. Fujita, Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Amer. J. Math. 140 (2018), no. 2, 391–414. 10.1353/ajm.2018.0009Suche in Google Scholar
[30]
K. Fujita,
A valuative criterion for uniform K-stability of
[31] K. Fujita, K-stability of Fano manifolds with not small alpha invariants, J. Inst. Math. Jussieu 18 (2019), no. 3, 519–530. 10.1017/S1474748017000111Suche in Google Scholar
[32] K. Fujita, K-stability of log Fano hyperplane arrangements, J. Algebraic Geom. 30 (2021), no. 4, 603–630. 10.1090/jag/783Suche in Google Scholar
[33] K. Fujita and Y. Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2) 70 (2018), no. 4, 511–521. 10.2748/tmj/1546570823Suche in Google Scholar
[34] T. Fujita, On singular del Pezzo varieties, Algebraic geometry (L’Aquila 1988), Lecture Notes in Math. 1417, Springer, Berlin (1990), 117–128. 10.1007/BFb0083337Suche in Google Scholar
[35] P. Gallardo, J. Martinez-Garcia and C. Spotti, Applications of the moduli continuity method to log K-stable pairs, J. Lond. Math. Soc. (2) 103 (2021), no. 2, 729–759. 10.1112/jlms.12390Suche in Google Scholar
[36] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University, Cambridge 2016. 10.1017/CBO9781316594193Suche in Google Scholar
[37]
C. Jiang,
Boundedness of
[38] Y. Kawamata, On effective non-vanishing and base-point-freeness, Asian J. Math. 4 (2000), no. 1, 173–181. 10.4310/AJM.2000.v4.n1.a11Suche in Google Scholar
[39] J. Kollár, Singularities of the minimal model program, Cambridge Tracts in Math. 200, Cambridge University, Cambridge 2013. 10.1017/CBO9781139547895Suche in Google Scholar
[40] J. Kollár and S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), no. 3, 533–703. 10.1090/S0894-0347-1992-1149195-9Suche in Google Scholar
[41] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University, Cambridge 1998. 10.1017/CBO9780511662560Suche in Google Scholar
[42] R. Laza, The moduli space of cubic fourfolds, J. Algebraic Geom. 18 (2009), no. 3, 511–545. 10.1090/S1056-3911-08-00506-7Suche in Google Scholar
[43] C. Li, K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017), no. 16, 3147–3218. 10.1215/00127094-2017-0026Suche in Google Scholar
[44] C. Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1–2, 491–513. 10.1007/s00209-017-1963-3Suche in Google Scholar
[45] C. Li, G-uniform stability and Kähler–Einstein metrics on Fano varieties, Invent. Math. 227 (2022), no. 2, 661–744. 10.1007/s00222-021-01075-9Suche in Google Scholar
[46] C. Li and Y. Liu, Kähler–Einstein metrics and volume minimization, Adv. Math. 341 (2019), 440–492. 10.1016/j.aim.2018.10.038Suche in Google Scholar
[47] C. Li, G. Tian and F. Wang, The uniform version of Yau–Tian–Donaldson conjecture for singular Fano varieties, preprint (2019), https://arxiv.org/abs/1903.01215; to appear in Peking Math. J. 10.1007/s42543-021-00039-5Suche in Google Scholar
[48] C. Li, X. Wang and C. Xu, On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties, Duke Math. J. 168 (2019), no. 8, 1387–1459. 10.1215/00127094-2018-0069Suche in Google Scholar
[49] C. Li, X. Wang and C. Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. 10.1090/jams/974Suche in Google Scholar
[50] C. Li and C. Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197–232. 10.4007/annals.2014.180.1.4Suche in Google Scholar
[51] C. Li and C. Xu, Stability of valuations: Higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. 10.1007/s42543-018-0001-7Suche in Google Scholar
[52] C. Li and C. Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. 10.4171/JEMS/972Suche in Google Scholar
[53] Y. Liu, The volume of singular Kähler–Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. 10.1112/S0010437X18007042Suche in Google Scholar
[54] Y. Liu and C. Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. 10.1215/00127094-2019-0006Suche in Google Scholar
[55] Y. Liu, C. Xu and Z. Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, preprint (2021), https://arxiv.org/abs/2102.09405; to appear in Ann. of Math. (2). 10.4007/annals.2022.196.2.2Suche in Google Scholar
[56] Y. Liu and Z. Zhu, Equivariant K-stability under finite group action, Internat. J. Math. 33 (2022), no. 1, Paper No. 2250007. 10.1142/S0129167X22500070Suche in Google Scholar
[57] Y. Liu and Z. Zhuang, Birational superrigidity and K-stability of singular Fano complete intersections, Int. Math. Res. Not. IMRN 2021 (2021), no. 1, 384–403. 10.1093/imrn/rnz148Suche in Google Scholar
[58] T. Mabuchi and S. Mukai, Stability and Einstein–Kähler metric of a quartic del Pezzo surface, Einstein metrics and Yang–Mills connections (Sanda 1990), Lecture Notes in Pure and Appl. Math. 145, Dekker, New York (1993), 133–160. 10.1201/9781003071891-11Suche in Google Scholar
[59]
A. L. Mayer,
Families of
[60] A. M. Nadel, Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. 10.2307/1971429Suche in Google Scholar
[61] Y. Odaka, Compact moduli spaces of Kähler–Einstein Fano varieties, Publ. Res. Inst. Math. Sci. 51 (2015), no. 3, 549–565. 10.4171/PRIMS/164Suche in Google Scholar
[62] Y. Odaka, C. Spotti and S. Sun, Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics, J. Differential Geom. 102 (2016), no. 1, 127–172. 10.4310/jdg/1452002879Suche in Google Scholar
[63] S. T. Paul and G. Tian, CM stability and the generalized Futaki invariant I, preprint (2006), https://arxiv.org/abs/math/0605278. Suche in Google Scholar
[64] L. Robbiano, Some properties of complete intersections in “good” projective varieties, Nagoya Math. J. 61 (1976), 103–111. 10.1017/S0027763000017323Suche in Google Scholar
[65] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17–26. 10.1007/BF01418741Suche in Google Scholar
[66] C. Spotti and S. Sun, Explicit Gromov–Hausdorff compactifications of moduli spaces of Kähler–Einstein Fano manifolds, Pure Appl. Math. Q. 13 (2017), no. 3, 477–515. 10.4310/PAMQ.2017.v13.n3.a5Suche in Google Scholar
[67]
C. Spotti, S. Sun and C. Yao,
Existence and deformations of Kähler–Einstein metrics on smoothable
[68] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. 10.1007/BF01231499Suche in Google Scholar
[69] G. Tian, The K-energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994), no. 2, 239–265. 10.4310/CAG.1994.v2.n2.a4Suche in Google Scholar
[70] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. 10.1007/s002220050176Suche in Google Scholar
[71] G. Tian, Canonical metrics in Kähler geometry, Lectures in Math. ETH Zürich, Birkhäuser, Basel 2000. 10.1007/978-3-0348-8389-4Suche in Google Scholar
[72] G. Tian, K-stability and Kähler–Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. 10.1002/cpa.21578Suche in Google Scholar
[73] C. Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. 10.4007/annals.2020.191.3.6Suche in Google Scholar
[74] C. Xu and Z. Zhuang, On positivity of the CM line bundle on K-moduli spaces, Ann. of Math. (2) 192 (2020), no. 3, 1005–1068. 10.4007/annals.2020.192.3.7Suche in Google Scholar
[75] C. Xu and Z. Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. 10.4310/CJM.2021.v9.n1.a2Suche in Google Scholar
[76] M. Yokoyama, Stability of cubic hypersurfaces of dimension 4, Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu B9, Research Institute for Mathematical Sciences, Kyoto (2008), 189–204. Suche in Google Scholar
[77] Z. Zhu, Higher codimensional alpha invariants and characterization of projective spaces, Internat. J. Math. 31 (2020), no. 2, Article ID 2050012. 10.1142/S0129167X20500123Suche in Google Scholar
[78] Z. Zhuang, Optimal destabilizing centers and equivariant K-stability, Invent. Math. 226 (2021), no. 1, 195–223. 10.1007/s00222-021-01046-0Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Simultaneous supersingular reductions of CM elliptic curves
- Almost all entries in the character table of the symmetric group are multiples of any given prime
- K-stability of cubic fourfolds
- Nguyen’s tridents and the classification of semigraphical translators for mean curvature flow
- A description of monodromic mixed Hodge modules
- The Lawson surfaces are determined by their symmetries and topology
- CMC hypersurfaces with bounded Morse index
- On Montgomery’s pair correlation conjecture: A tale of three integrals
- Kähler spaces with zero first Chern class: Bochner principle, Albanese map and fundamental groups
Artikel in diesem Heft
- Frontmatter
- Simultaneous supersingular reductions of CM elliptic curves
- Almost all entries in the character table of the symmetric group are multiples of any given prime
- K-stability of cubic fourfolds
- Nguyen’s tridents and the classification of semigraphical translators for mean curvature flow
- A description of monodromic mixed Hodge modules
- The Lawson surfaces are determined by their symmetries and topology
- CMC hypersurfaces with bounded Morse index
- On Montgomery’s pair correlation conjecture: A tale of three integrals
- Kähler spaces with zero first Chern class: Bochner principle, Albanese map and fundamental groups