Startseite VI-modules in non-describing characteristic, part II
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

VI-modules in non-describing characteristic, part II

  • Rohit Nagpal EMAIL logo
Veröffentlicht/Copyright: 16. Oktober 2021

Abstract

We classify all irreducible generic VI-modules in non-describing characteristic. Our result degenerates to yield a classification of irreducible generic FI-modules in arbitrary characteristic. Equivalently, we provide a complete classification of irreducibles of admissible 𝐆𝐋(𝔽q)-representations in non-describing characteristic, which is new even in characteristic zero. This result degenerates to provide a complete classification of irreducibles of admissible S-representations in arbitrary characteristic, which is new away from characteristic zero.

Acknowledgements

We thank Inna Entova-Aizenbud and Steven V Sam for discussions on the 𝐆𝐋-perspective which is outlined in Section 1.3. We thank the anonymous referee for a careful reading and suggesting Remarks 1.9 and 1.17 to us.

References

[1] D. Barter, I. Entova-Aizenbud and T. Heidersdorf, Deligne categories and representations of the infinite symmetric group, Adv. Math. 346 (2019), 1–47. 10.1016/j.aim.2019.01.041Suche in Google Scholar

[2] T. Church and J. S. Ellenberg, Homology of FI-modules, Geom. Topol. 21 (2017), no. 4, 2373–2418. 10.2140/gt.2017.21.2373Suche in Google Scholar

[3] T. Church, J. S. Ellenberg and B. Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910. 10.1215/00127094-3120274Suche in Google Scholar

[4] T. Church, J. Miller, R. Nagpal and J. Reinhold, Linear and quadratic ranges in representation stability, Adv. Math. 333 (2018), 1–40. 10.1016/j.aim.2018.05.025Suche in Google Scholar

[5] J. Comes and V. Ostrik, On Deligne’s category Rep¯ab(Sd), Algebra Number Theory 8 (2014), no. 2, 473–496. 10.2140/ant.2014.8.473Suche in Google Scholar

[6] P. Deligne, La catégorie des représentations du groupe symétrique St, lorsque t n’est pas un entier naturel, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math. 19, Tata Institute of Fundamental Research, Mumbai (2007), 209–273. Suche in Google Scholar

[7] P. Deligne, J. S. Milne, A. Ogus and K.-Y. Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, Springer, Berlin 1982. 10.1007/978-3-540-38955-2Suche in Google Scholar

[8] I. Entova-Aizenbud, V. Hinich and V. Serganova, Deligne categories and the limit of categories Rep(GL(m|n)), Int. Math. Res. Not. IMRN 2020 (2020), no. 15, 4602–4666. 10.1093/imrn/rny144Suche in Google Scholar

[9] W. L. Gan and L. Li, Bounds on homological invariants of VI-modules, Michigan Math. J. 69 (2020), no. 2, 273–284. 10.1307/mmj/1574326878Suche in Google Scholar

[10] W. L. Gan, L. Li and C. Xi, An application of Nakayama functor in representation stability theory, Indiana Univ. Math. J. 69 (2020), no. 7, 2325–2338. 10.1512/iumj.2020.69.8094Suche in Google Scholar

[11] W. L. Gan and J. Watterlond, A representation stability theorem for VI-modules, Algebr. Represent. Theory 21 (2018), no. 1, 47–60. 10.1007/s10468-017-9703-2Suche in Google Scholar

[12] N. Harman, Stability and periodicity in the modular representation theory of symmetric groups, preprint (2015), https://arxiv.org/abs/1509.06414. Suche in Google Scholar

[13] N. Harman, Virtual Specht stability for FI-modules in positive characteristic, J. Algebra 488 (2017), 29–41. 10.1016/j.jalgebra.2017.06.006Suche in Google Scholar

[14] F. Knop, Tensor envelopes of regular categories, Adv. Math. 214 (2007), no. 2, 571–617. 10.1016/j.aim.2007.03.001Suche in Google Scholar

[15] R. Nagpal, VI-modules in nondescribing characteristic, part I, Algebra Number Theory 13 (2019), no. 9, 2151–2189. 10.2140/ant.2019.13.2151Suche in Google Scholar

[16] G. M. L. Powell, On Artinian objects in the category of functors between 𝐅2-vector spaces, Infinite length modules (Bielefeld 1998), Trends Math., Birkhäuser, Basel (2000), 213–228. 10.1007/978-3-0348-8426-6_10Suche in Google Scholar

[17] A. Putman and S. V. Sam, Representation stability and finite linear groups, Duke Math. J. 166 (2017), no. 13, 2521–2598. 10.1215/00127094-2017-0008Suche in Google Scholar

[18] S. V. Sam and A. Snowden, GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc. 368 (2016), no. 2, 1097–1158. 10.1090/tran/6355Suche in Google Scholar

[19] S. V. Sam and A. Snowden, Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017), no. 1, 159–203. 10.1090/jams/859Suche in Google Scholar

Received: 2021-08-30
Published Online: 2021-10-16
Published in Print: 2021-12-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0054/html
Button zum nach oben scrollen