Home Brauer’s Height Zero Conjecture for principal blocks
Article
Licensed
Unlicensed Requires Authentication

Brauer’s Height Zero Conjecture for principal blocks

  • Gunter Malle EMAIL logo and Gabriel Navarro
Published/Copyright: May 29, 2021

Abstract

We prove the other half of Brauer’s Height Zero Conjecture in the case of principal blocks.

Award Identifier / Grant number: 286237555 – TRR 195

Funding statement: The first author gratefully acknowledges financial support by SFB TRR 195. The research of the second author is supported by Ministerio de Ciencia e Innovación PID2019-103854GB-I00 and FEDER funds.

Acknowledgements

We thank Yanjun Liu, Lizhong Wang, Wolfgang Willems and Jiping Zhang for e-mails prompting our interest in the subject of this paper, and Yanjun Liu for pertinent questions on an earlier version.

References

[1] J. L. Alperin, Isomorphic blocks, J. Algebra 43 (1976), no. 2, 694–698. 10.1016/0021-8693(76)90135-6Search in Google Scholar

[2] R. Brauer, Number theoretical investigations on groups of finite order, Proceedings of the international symposium on algebraic number theory (Tokyo and Nikko 1955), Science Council of Japan, Tokyo (1956), 55–62. Search in Google Scholar

[3] R. Brauer, Representations of finite groups, Lectures on modern mathematics. Vol. I, Wiley, New York (1963), 133–175. Search in Google Scholar

[4] M. Broué and G. Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, Math. Ann. 292 (1992), no. 2, 241–262. 10.1007/BF01444619Search in Google Scholar

[5] M. Cabanes and M. Enguehard, On unipotent blocks and their ordinary characters, Invent. Math. 117 (1994), no. 1, 149–164. 10.1007/BF01232237Search in Google Scholar

[6] E. C. Dade, Remarks on isomorphic blocks, J. Algebra 45 (1977), no. 1, 254–258. 10.1016/0021-8693(77)90371-4Search in Google Scholar

[7] D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups, Math. Surveys Monogr. 40, American Mathematical Society, Providence 1998. 10.1090/surv/040.4Search in Google Scholar

[8] I. M. Isaacs, Characters of π-separable groups, J. Algebra 86 (1984), no. 1, 98–128. 10.1016/0021-8693(84)90058-9Search in Google Scholar

[9] I. M. Isaacs, Character theory of finite groups, AMS Chelsea, Providence 2006. 10.1090/chel/359Search in Google Scholar

[10] I. M. Isaacs, G. Malle and G. Navarro, A reduction theorem for the McKay conjecture, Invent. Math. 170 (2007), no. 1, 33–101. 10.1007/s00222-007-0057-ySearch in Google Scholar

[11] R. Kessar and G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. (2) 178 (2013), no. 1, 321–384. 10.4007/annals.2013.178.1.6Search in Google Scholar

[12] R. Kessar and G. Malle, Brauer’s height zero conjecture for quasi-simple groups, J. Algebra 475 (2017), 43–60. 10.1016/j.jalgebra.2016.05.010Search in Google Scholar

[13] W. Kimmerle and R. Sandling, Group-theoretic and group ring-theoretic determination of certain Sylow and Hall subgroups and the resolution of a question of R. Brauer, J. Algebra 171 (1995), no. 2, 329–346. 10.1006/jabr.1995.1014Search in Google Scholar

[14] G. Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007), 192–220. 10.1090/S1088-4165-07-00312-3Search in Google Scholar

[15] G. Malle, Extensions of unipotent characters and the inductive McKay condition, J. Algebra 320 (2008), no. 7, 2963–2980. 10.1016/j.jalgebra.2008.06.033Search in Google Scholar

[16] G. Malle and D. Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge University, Cambridge 2011. 10.1017/CBO9780511994777Search in Google Scholar

[17] G. O. Michler, A finite simple group of Lie type has p-blocks with different defects, p2, J. Algebra 104 (1986), no. 2, 220–230. 10.1016/0021-8693(86)90212-7Search in Google Scholar

[18] G. Navarro, Characters and blocks of finite groups, London Math. Soc. Lecture Note Ser. 250, Cambridge University, Cambridge 1998. 10.1017/CBO9780511526015Search in Google Scholar

[19] G. Navarro, R. Solomon and P. H. Tiep, Abelian Sylow subgroups in a finite group, II, J. Algebra 421 (2015), 3–11. 10.1016/j.jalgebra.2014.08.012Search in Google Scholar

[20] G. Navarro and B. Späth, On Brauer’s height zero conjecture, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 695–747. 10.4171/JEMS/444Search in Google Scholar

[21] G. Navarro and P. H. Tiep, Brauer’s height zero conjecture for the 2-blocks of maximal defect, J. reine angew. Math. 669 (2012), 225–247. 10.1515/CRELLE.2011.147Search in Google Scholar

[22] G. Navarro and P. H. Tiep, Characters of relative p-degree over normal subgroups, Ann. of Math. (2) 178 (2013), no. 3, 1135–1171. 10.4007/annals.2013.178.3.7Search in Google Scholar

[23] B. Späth, A reduction theorem for the Alperin–McKay conjecture, J. reine angew. Math. 680 (2013), 153–189. 10.1515/crelle.2012.035Search in Google Scholar

[24] J. Taylor, Action of automorphisms on irreducible characters of symplectic groups, J. Algebra 505 (2018), 211–246. 10.1016/j.jalgebra.2018.03.008Search in Google Scholar

[25] J. H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. (2) 89 (1969), 405–514. 10.2307/1970648Search in Google Scholar

[26] W. Willems, p-theory and modular representation theory, J. Algebra 104 (1986), no. 1, 135–140. 10.1016/0021-8693(86)90243-7Search in Google Scholar

Received: 2020-07-03
Revised: 2021-02-19
Published Online: 2021-05-29
Published in Print: 2021-09-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0024/html
Scroll to top button