Abstract
In the present paper, we generalize the celebrated classical
lemma of Birch and Heegner on quadratic twists of elliptic curves over
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11701092
Funding statement: Jie Shu is supported by the National Natural Science Foundation of China (Grant No. 11701092).
Acknowledgements
We would like to thank John Coates for encouragement, useful discussions and polishings on the manuscript, thank Ye Tian and Xin Wan for helpful advice and comments, and thank Yongxiong Li for helpful comments and carefully reading the manuscript. We also thank the referee for helpful advice.
References
[1] A. Abbes and E. Ullmo, à propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compos. Math. 103 (1996), no. 3, 269–286. Suche in Google Scholar
[2] B. J. Birch, Elliptic curves and modular functions, Symposia mathematica. Vol. IV (Rome 1968/69), Academic Press, London (1970), 27–32. Suche in Google Scholar
[3]
C. Breuil, B. Conrad, F. Diamond and R. Taylor,
On the modularity of elliptic curves over
[4] L. Cai, Y. Li and Z. Wang, Special automorphisms on Shimura curves and non-triviality of Heegner points, Sci. China Math. 59 (2016), no. 7, 1307–1326. 10.1007/s11425-016-5128-3Suche in Google Scholar
[5] L. Cai, J. Shu and Y. Tian, Explicit Gross–Zagier and Waldspurger formulae, Algebra Number Theory 8 (2014), no. 10, 2523–2572. 10.2140/ant.2014.8.2523Suche in Google Scholar
[6] J. W. S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. reine angew. Math. 217 (1965), 180–199. 10.1515/crll.1965.217.180Suche in Google Scholar
[7] J. Coates, Lectures on the Birch–Swinnerton-Dyer conjecture, ICCM Not. 1 (2013), no. 2, 29–46. 10.4310/ICCM.2013.v1.n2.a5Suche in Google Scholar
[8] J. Coates, Y. Li, Y. Tian and S. Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357–394. 10.1112/plms/pdu059Suche in Google Scholar
[9] T. Dokchitser and V. Dokchitser, Local invariants of isogenous elliptic curves, Trans. Amer. Math. Soc. 367 (2015), no. 6, 4339–4358. 10.1090/S0002-9947-2014-06271-5Suche in Google Scholar
[10] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, Number theory (Carbondale 1979), Lecture Notes in Math. 751, Springer, Berlin (1979) 108–118. 10.1007/BFb0062705Suche in Google Scholar
[11]
B. H. Gross,
Heegner points on
[12] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225–320. 10.1007/BF01388809Suche in Google Scholar
[13] Z. Klagsbrun, Selmer ranks of quadratic twists of elliptic curves with partial rational two-torsion, Trans. Amer. Math. Soc. 369 (2017), no. 5, 3355–3385. 10.1090/tran/6744Suche in Google Scholar
[14] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift. Vol. II, Progr. Math. 87, Birkhäuser, Boston (1990), 435–483. 10.1007/978-0-8176-4575-5_11Suche in Google Scholar
[15] D. Kriz and C. Li, Goldfeld’s conjecture and congruences between Heegner points, Forum Math. Sigma 7 (2019), Paper No. e15. 10.1017/fms.2019.9Suche in Google Scholar
[16] J. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66. 10.1142/9789812830517_0010Suche in Google Scholar
[17] J.-F. Mestre and J. Oesterlé, Courbes de Weil semi-stables de discriminant une puissance m-ième, J. reine angew. Math. 400 (1989), 173–184. 10.1515/crll.1989.400.173Suche in Google Scholar
[18] O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I, Math. Nachr. 49 (1971), 107–123. 10.1002/mana.19710490108Suche in Google Scholar
[19] O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. II, Math. Nachr. 56 (1973), 269–280. 10.1002/mana.19730560127Suche in Google Scholar
[20] K. Ono, Nonvanishing of quadratic twists of modular L-functions and applications to elliptic curves, J. reine angew. Math. 533 (2001), 81–97. 10.1515/crll.2001.027Suche in Google Scholar
[21] K. Ono and C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (1998), no. 3, 651–660. 10.1007/s002220050275Suche in Google Scholar
[22] V. Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513–1525. 10.1090/S0002-9939-2011-11014-1Suche in Google Scholar
[23] A. Perelli and J. Pomykała, Averages of twisted elliptic L-functions, Acta Arith. 80 (1997), no. 2, 149–163. 10.4064/aa-80-2-149-163Suche in Google Scholar
[24] B. Setzer, Elliptic curves of prime conductor, J. Lond. Math. Soc. (2) 10 (1975), 367–378. 10.1112/jlms/s2-10.3.367Suche in Google Scholar
[25] A. Silverberg, The distribution of ranks in families of quadratic twists of elliptic curves, Ranks of elliptic curves and random matrix theory London Math. Soc. Lecture Note Ser. 341, Cambridge University, Cambridge (2007), 171–176. 10.1017/CBO9780511735158.008Suche in Google Scholar
[26] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Grad. Texts in Math. 151, Springer, New York 1994. 10.1007/978-1-4612-0851-8Suche in Google Scholar
[27] J. H. Silverman, The arithmetic of elliptic curves, 2nd ed., Grad. Texts in Math. 106, Springer, Dordrecht 2009. 10.1007/978-0-387-09494-6Suche in Google Scholar
[28]
A. Smith,
[29] Y. Tian, Congruent numbers and Heegner points, Camb. J. Math. 2 (2014), no. 1, 117–161. 10.4310/CJM.2014.v2.n1.a4Suche in Google Scholar
[30] X. Wan, Iwasawa main conjecture for supersingular elliptic curves and BSD conjecture, preprint (2019), https://arxiv.org/abs/1411.6352v7. 10.29007/mmk4Suche in Google Scholar
[31] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. 10.1007/978-3-0348-9078-6_18Suche in Google Scholar
[32] S. Zhai, Non-vanishing theorems for quadratic twists of elliptic curves, Asian J. Math. 20 (2016), no. 3, 475–502. 10.4310/AJM.2016.v20.n3.a4Suche in Google Scholar
[33] S. Zhai, The Birch–Swinnerton-Dyer exact formula for quadratic twists of elliptic curves, preprint (2020), https://arxiv.org/abs/2102.11798. Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Estimates on derivatives of Coulombic wave functions and their electron densities
- Quantitative stratification of stationary connections
- Regular Bernstein blocks
- Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case
- Generalized Birch lemma and the 2-part of the Birch and Swinnerton-Dyer conjecture for certain elliptic curves
- Single-valued integration and double copy
- Eigenfunction concentration via geodesic beams
- The Hodge-FVH correspondence
Artikel in diesem Heft
- Frontmatter
- Estimates on derivatives of Coulombic wave functions and their electron densities
- Quantitative stratification of stationary connections
- Regular Bernstein blocks
- Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case
- Generalized Birch lemma and the 2-part of the Birch and Swinnerton-Dyer conjecture for certain elliptic curves
- Single-valued integration and double copy
- Eigenfunction concentration via geodesic beams
- The Hodge-FVH correspondence