Abstract
We study the behaviour of the Arakelov metric on a smooth curve under semistable degeneration. The final result is a complicated formula involving the local discriminants of the singularities, and the graph governing the degeneration.
References
[1] S. J. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192. 10.1070/IM1974v008n06ABEH002141Suche in Google Scholar
[2] J.-B. Bost, Fonctions de Green-Arakelov, fonctions thêta et courbes de genre 2, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 14, 643–646. Suche in Google Scholar
[3] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. 10.2307/2007043Suche in Google Scholar
[4] G. Faltings and C.-L. Chai, Degeneration of abelian varieties. With an appendix by David Mumford, Ergeb. Math. Grenzgeb. (3) 22, Springer, Berlin 1990. 10.1007/978-3-662-02632-8Suche in Google Scholar
[5] R. de Jong, Faltings delta-invariant and semistable degeneration, J. Differential Geom. 111 (2019), no. 2, 241–301. 10.4310/jdg/1549422102Suche in Google Scholar
[6] J. Jorgenson, Asymptotic behavior of Faltings’s delta function, Duke Math. J. 61 (1990), no. 1, 221–254. 10.1215/S0012-7094-90-06111-3Suche in Google Scholar
[7] R. Wentworth, The asymptotics of the Arakelov–Green’s function and Faltings’ delta invariant, Comm. Math. Phys. 137 (1991), no. 3, 427–459. 10.1007/BF02100272Suche in Google Scholar
[8] R. Wilms, On Faltings’ delta invariant, Ph.D. thesis, Bonn 2016. Suche in Google Scholar
[9] S. Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171–193. 10.1007/BF01232429Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Virtual cycles of gauged Witten equation
- Arakelov geometry on degenerating curves
- Ancient solutions for Andrews’ hypersurface flow
- On the regular-convexity of Ricci shrinker limit spaces
- The metric geometry of singularity types
- Profinite rigidity for twisted Alexander polynomials
- On the set of divisors with zero geometric defect
- Smooth rational affine varieties with infinitely many real forms
Artikel in diesem Heft
- Frontmatter
- Virtual cycles of gauged Witten equation
- Arakelov geometry on degenerating curves
- Ancient solutions for Andrews’ hypersurface flow
- On the regular-convexity of Ricci shrinker limit spaces
- The metric geometry of singularity types
- Profinite rigidity for twisted Alexander polynomials
- On the set of divisors with zero geometric defect
- Smooth rational affine varieties with infinitely many real forms