Startseite Genus of abstract modular curves with level-ℓ structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Genus of abstract modular curves with level-ℓ structures

  • Anna Cadoret EMAIL logo und Akio Tamagawa
Veröffentlicht/Copyright: 8. November 2016

Abstract

We prove – in arbitrary characteristic – that the genus of abstract modular curves associated to bounded families of continuous geometrically perfect 𝔽-linear representations of étale fundamental groups of curves goes to infinity with . This applies to the variation of the Galois image on étale cohomology groups with coefficients in 𝔽 in 1-dimensional families of smooth proper schemes or, under certain assumptions, to specialization of first Galois cohomology groups.

Award Identifier / Grant number: ANR-10-JCJC 0107

Award Identifier / Grant number: DMS-1155

Award Identifier / Grant number: 22340006

Award Identifier / Grant number: 15H03609

Funding statement: This work was partly supported by RIMS, Kyoto University. The first author was also partly supported by the project ANR-10-JCJC 0107 from the Agence Nationale de la Recherche and the NSF grant DMS-1155. Most of this work was elaborated during stays of the first author at RIMS and IAS. She would like to thank both institutes for their hospitality. The second author was partly supported by JSPS KAKENHI Grant Numbers 22340006, 15H03609.

Acknowledgements

The first author would like to thank Michael Larsen for his interest and stimulating discussions on the topics of this paper while she visited him at Indiana University. The authors are grateful to the referee for numerous constructive comments.

References

[1] P. Berthelot, Altération des variétés algébriques (d’après A. J. de Jong), Séminaire Bourbaki. Vol. 1995/1996, Astérisque 241, Société Mathématique de France, Paris (1997), Exposé 815, 273–311. Suche in Google Scholar

[2] A. Borel, Linear algebraic groups, W. A. Benjamin, New York 1969. Suche in Google Scholar

[3] A. Cadoret, Note on the gonality of abstract modular curves, The arithmetic of fundamental groups (Heidelberg 2010), Contrib. Math. Comput. Sci. 2, Springer, Berlin (2012), 89–106. 10.1007/978-3-642-23905-2_4Suche in Google Scholar

[4] A. Cadoret, Representations of étale fundamental group and specialization of algebraic cycles, in preparation. 10.1090/conm/767/15406Suche in Google Scholar

[5] A. Cadoret, C.-Y. Hui and A. Tamagawa, Geometric monodromy – Semisimplicity and maximality, preprint (2016). 10.4007/annals.2017.186.1.5Suche in Google Scholar

[6] A. Cadoret and A. Tamagawa, On a weak variant of the geometric torsion conjecture, J. Algebra 346 (2011), 227–247. 10.1016/j.jalgebra.2011.09.002Suche in Google Scholar

[7] A. Cadoret and A. Tamagawa, A uniform open image theorem for -adic representations I, Duke Math. J. 161 (2012), 2605–2634. 10.1215/00127094-1812954Suche in Google Scholar

[8] A. Cadoret and A. Tamagawa, Uniform boundedness of p-primary torsion of abelian schemes, Invent. Math. 188 (2012), 83–125. 10.1007/s00222-011-0343-6Suche in Google Scholar

[9] A. Cadoret and A. Tamagawa, A uniform open image theorem for -adic representations II, Duke Math. J. 162 (2013), 2301–2344. 10.1215/00127094-2323013Suche in Google Scholar

[10] A. Cadoret and A. Tamagawa, On the geometric image of 𝔽-linear representations of étale fundamental groups, preprint (2013). 10.1093/imrn/rnx193Suche in Google Scholar

[11] A. Cadoret and A. Tamagawa, Gonality of abstract modular curves in positive characteristic, Compos. Math. (2016), 10.1112/S0010437X16007612. 10.1112/S0010437X16007612Suche in Google Scholar

[12] G. Cornelissen, F. Kato and J. Kool, A combinatorial Li–Yau inequality and rational points on curves, Math. Ann. 361 (2015), no. 1, 211–258. 10.1007/s00208-014-1067-xSuche in Google Scholar

[13] P. Deligne, Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5–57. 10.1007/BF02684692Suche in Google Scholar

[14] P. Deligne, La conjecture de Weil. II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137–252. 10.1007/BF02684780Suche in Google Scholar

[15] J. Ellenberg, C. Elsholtz, C. Hall and E. Kowalski, Non-simple abelian varieties in a family: Geometric and analytic approaches, J. Lond. Math. Soc. (2) 80 (2009), 135–154. 10.1112/jlms/jdp021Suche in Google Scholar

[16] J. Ellenberg, C. Hall and E. Kowalski, Expander graphs, gonality and variation of Galois representations, Duke Math. J. 161 (2012), 1233–1275. 10.1215/00127094-1593272Suche in Google Scholar

[17] G. Faltings, The general case of S. Lang’s conjecture, Barsotti symposium in algebraic geometry (Abano Terme 1991), Perspect. Math. 15, Academic Press, San Diego (1994), 175–182. 10.1016/B978-0-12-197270-7.50012-7Suche in Google Scholar

[18] G. Faltings and G. Wüstholz, Rational points, Aspects Math. E6, Friedrich Vieweg & Sohn, Braunschweig 1984. 10.1007/978-3-322-83918-3Suche in Google Scholar

[19] G. Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), 79–83. 10.1007/BF02758637Suche in Google Scholar

[20] O. Gabber, Sur la torsion dans la cohomologie -adique d’une variété, C.R. Acad. Sci. Paris Ser. I Math. 297 (1983), 179–182. Suche in Google Scholar

[21] A. Grothendieck, Eléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Troisième partie), Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255. 10.1007/BF02684343Suche in Google Scholar

[22] A. Grothendieck and M. Raynaud, Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1). Revêtements étales et groupe fondamental, Lecture Notes in Math. 224, Springer, Berlin 1971. 10.1007/BFb0058656Suche in Google Scholar

[23] R. Guralnick, Monodromy group of covering curves, Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ. 41, Cambridge University Press, Cambridge (2003), 1–46. Suche in Google Scholar

[24] E. Hrushovski, The Mordell–Lang conjecture for function fields, J. Amer. Math. Soc. 9 (1996), 667–690. 10.1090/S0894-0347-96-00202-0Suche in Google Scholar

[25] S. Lang and A. Néron, Rational points of abelian varieties over function fields, Amer. J. Math. 81 (1959), 95–118. 10.2307/2372851Suche in Google Scholar

[26] M. Larsen and R. Pink, Finite subgroups of algebraic groups, J. Amer. Math. Soc. 24 (2011), 1105–1158. 10.1090/S0894-0347-2011-00695-4Suche in Google Scholar

[27] A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101–142. 10.1007/s002220050358Suche in Google Scholar

[28] M. V. Nori, On subgroups of GLn(𝔽p), Invent.Math. 88 (1987), 257–275. 10.1007/BF01388909Suche in Google Scholar

[29] F. Orgogozo, Sur les propriétés d’uniformité des images directes en cohomologie étale, preprint (2013). Suche in Google Scholar

[30] J.-P. Serre, Corps locaux, Hermann, Paris 1968. Suche in Google Scholar

[31] J. P. Serre, Lectures on the Mordell–Weil theorem, Friedrich Vieweg & Sohn, Braunschweig 1989. 10.1007/978-3-663-14060-3Suche in Google Scholar

[32] J.-P. Serre, Sur la semisimplicité des produits tensoriels de représentations de groupes, Invent Math. 116 (1994), 513–530. 10.1007/BF01231571Suche in Google Scholar

[33] J.-P. Serre, Collected papers. Vol. IV, Springer, Berlin 2000. 10.1007/978-3-642-41978-2Suche in Google Scholar

[34] J. H. Silverman, Heights and the specialization map for families of abelian varieties, J. reine angew. Math. 342 (1983), 197–211. 10.1515/crll.1983.342.197Suche in Google Scholar

[35] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionkörpers von Primzahlcharakteristik I, Arch. Math. (Basel) 24 (1973), 527–544. 10.1007/BF01228251Suche in Google Scholar

[36] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionkörpers von Primzahlcharakteristik II, Arch. Math. (Basel) 24 (1973), 615–631. 10.1007/BF01228261Suche in Google Scholar

[37] M. Suzuki, Group theory I, Grundlehren Math. Wiss. 247, Springer, Berlin 1982. 10.1007/978-3-642-61804-8Suche in Google Scholar

[38] L. Szpiro, Séminaire sur les pinceaux arithmétiques: La conjecture de Mordell, Astérisque 127, Société Mathématique de France, Paris 1985. Suche in Google Scholar

[39] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. 10.1007/BF01404549Suche in Google Scholar

[40] J. G. Zarhin, Endomorphisms of abelian varieties and points of finite order in characteristic p (Russian), Mat. Zametki 21 (1977), 737–744. 10.1007/BF01410167Suche in Google Scholar

Received: 2014-12-13
Revised: 2016-08-05
Published Online: 2016-11-08
Published in Print: 2019-07-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2016-0057/html
Button zum nach oben scrollen