Startseite Balanced line bundles on Fano varieties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Balanced line bundles on Fano varieties

  • Brian Lehmann EMAIL logo , Sho Tanimoto und Yuri Tschinkel
Veröffentlicht/Copyright: 20. Januar 2016

Abstract

A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample anticanonical class to geometric invariants. We analyze the geometry underlying these invariants using the Minimal Model Program and then apply our results to primitive Fano threefolds.

Award Identifier / Grant number: 1160859

Funding statement: The second author was partially supported by Lars Hesselholt’s Niels Bohr professorship. The third author was partially supported by NSF grant 1160859.

Acknowledgements

The authors would like to thank Brendan Hassett, Damiano Testa, and Anthony Várilly-Alvarado for useful suggestions and Mihai Fulger for providing an argument for Lemma 4.7.

References

[1] U. Angehrn and Y. T. Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), no. 2, 291–308. 10.1007/BF01231446Suche in Google Scholar

[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136. 10.2307/2373050Suche in Google Scholar

[3] V. V. Batyrev and Y. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1–3, 27–43. 10.1007/BF01453564Suche in Google Scholar

[4] V. V. Batyrev and Y. Tschinkel, Rational points on some Fano cubic bundles, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 1, 41–46. Suche in Google Scholar

[5] V. V. Batyrev and Y. Tschinkel, Tamagawa numbers of polarized algebraic varieties, Nombre et répartition de points de hauteur bornée (Paris 1996), Astérisque 251, Société Mathématique de France, Paris (1998), 299–340. Suche in Google Scholar

[6] A. Beauville, Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes, Complex analysis and algebraic geometry (Göttingen 1985), Lecture Notes in Math. 1194, Springer, Berlin (1986), 8–18. 10.1007/BFb0076991Suche in Google Scholar

[7] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. 10.1090/S0894-0347-09-00649-3Suche in Google Scholar

[8] S. Boucksom, J.-P. Demailly, M. Paun and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. 10.1090/S1056-3911-2012-00574-8Suche in Google Scholar

[9] T. D. Browning and D. Loughran, Varieties with too many rational points, preprint (2013), http://arxiv.org/abs/1311.5755. 10.1007/s00209-016-1746-2Suche in Google Scholar

[10] A. Chambert-Loir and Y. Tschinkel, Torseurs arithmétiques et espaces fibrés, Rational points on algebraic varieties, Progr. Math. 199, Birkhäuser, Basel (2001), 37–70. 10.1007/978-3-0348-8368-9_3Suche in Google Scholar

[11] I. Cheltsov, J. Park and J. Won, Cylinders in del Pezzo surfaces, preprint (2015), http://arxiv.org/abs/1508.06375. 10.1093/imrn/rnw063Suche in Google Scholar

[12] I. A. Chel’tsov, Del Pezzo surfaces with nonrational singularities (Russian), Mat. Zametki 62 (1997), no. 3, 451–467; translation in Math. Notes 62 (1997), no. 3, 377–389. 10.1007/BF02360880Suche in Google Scholar

[13] G. Codogni, A. Fanelli, R. Svaldi and T. Luca, Fano varieties in Mori fibre spaces, preprint (2014), http://arxiv.org/abs/1406.7634v1. 10.1093/imrn/rnv173Suche in Google Scholar

[14] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1701–1734. 10.5802/aif.2225Suche in Google Scholar

[15] A.-S. Elsenhans, Rational points on some Fano quadratic bundles, Exp. Math. 20 (2011), no. 4, 373–379. 10.1080/10586458.2011.565254Suche in Google Scholar

[16] J. Franke, Y. I. Manin and Y. Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. 10.1007/BF01393904Suche in Google Scholar

[17] A. Gorodnik, R. Takloo-Bighash and Y. Tschinkel, Multiple mixing for adele groups and rational points, preprint (2011), http://arxiv.org/abs/1112.5743. 10.1007/s40879-015-0067-zSuche in Google Scholar

[18] B. H. Gross and J. Harris, On some geometric constructions related to theta characteristics, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins University Press, Baltimore (2004), 279–311. Suche in Google Scholar

[19] C. D. Hacon and J. McKernan, On Shokurov’s rational connectedness conjecture, Duke Math. J. 138 (2007), no. 1, 119–136. 10.1215/S0012-7094-07-13813-4Suche in Google Scholar

[20] B. Hassett, S. Tanimoto and Y. Tschinkel, Balanced line bundles and equivariant compactifications of homogeneous spaces, Int. Math. Res. Not. IMRN 2015 (2015), no. 15, 6375–6410. 10.1093/imrn/rnu129Suche in Google Scholar

[21] Y. Ishii and N. Nakayama, Classification of normal quartic surfaces with irrational singularities, J. Math. Soc. Japan 56 (2004), no. 3, 941–965. 10.2969/jmsj/1191334093Suche in Google Scholar

[22] V. A. Iskovskih, Fano threefolds. I (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516–562, 717. Suche in Google Scholar

[23] V. A. Iskovskih, Fano threefolds. II (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 506–549. Suche in Google Scholar

[24] V. A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties (Russian), Current problems in mathematics. Vol. 12, VINITI, Moscow (1979), 59–157, 239 (loose errata). Suche in Google Scholar

[25] V. A. Iskovskikh and Y. G. Prokhorov, Fano varieties, Algebraic geometry. V, Encyclopaedia Math. Sci. 47, Springer, Berlin (1999), 1–247. Suche in Google Scholar

[26] Y. Kawamata, Boundedness of Q-Fano threefolds, Proceedings of the international conference on algebra. Part 3 (Novosibirsk 1989), Contemp. Math. 131, American Mathematical Society, Providence (1992), 439–445. 10.1090/conm/131.3/1175897Suche in Google Scholar

[27] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer, Berlin 1996. 10.1007/978-3-662-03276-3Suche in Google Scholar

[28] J. Kollár, Singularities of pairs, Algebraic geometry (Santa Cruz 1995), Proc. Sympos. Pure Math. 62, American Mathematical Society, Providence (1997), 221–287. 10.1090/pspum/062.1/1492525Suche in Google Scholar

[29] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge 1998. 10.1017/CBO9780511662560Suche in Google Scholar

[30] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3) 48, Springer, Berlin 2004. 10.1007/978-3-642-18808-4Suche in Google Scholar

[31] B. Lehmann, A cone theorem for nef curves, J. Algebraic Geom. 21 (2012), no. 3, 473–493. 10.1090/S1056-3911-2011-00580-8Suche in Google Scholar

[32] Y. I. Manin, Notes on the arithmetic of Fano threefolds, Compos. Math. 85 (1993), no. 1, 37–55. 10.1142/9789812830517_0020Suche in Google Scholar

[33] D. Maulik and B. Poonen, Néron–Severi groups under specialization, Duke Math. J. 161 (2012), no. 11, 2167–2206. 10.1215/00127094-1699490Suche in Google Scholar

[34] S. Mori, On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975), no. 3, 619–646. 10.1215/kjm/1250523007Suche in Google Scholar

[35] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. 10.2307/2007050Suche in Google Scholar

[36] S. Mori and S. Mukai, Classification of Fano 3-folds with B22, Manuscripta Math. 36 (1981/82), no. 2, 147–162. 10.1007/BF01170131Suche in Google Scholar

[37] S. Mori and S. Mukai, On Fano 3-folds with B22, Algebraic varieties and analytic varieties (Tokyo 1981), Adv. Stud. Pure Math. 1, North-Holland, Amsterdam (1983), 101–129. 10.2969/aspm/00110101Suche in Google Scholar

[38] S. Mori and S. Mukai, Extremal rays and Fano 3-folds, The Fano conference (Torino 2002), Università di Torino, Dipartimento di Matematica, Torino (2004), 37–50. Suche in Google Scholar

[39] A. Ott, On Fano threefolds with b22, Diploma thesis, Universität Bayreuth, Bayreuth 2005. Suche in Google Scholar

[40] T. Peternell, Varieties with generically nef tangent bundles, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 571–603. 10.4171/JEMS/312Suche in Google Scholar

[41] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), no. 1, 101–218. 10.1215/S0012-7094-95-07904-6Suche in Google Scholar

[42] M. Reid, Chapters on algebraic surfaces, Complex algebraic geometry (Park City 1993), IAS/Park City Math. Ser. 3, American Mathematical Society, Providence (1997), 3–159. 10.1090/pcms/003/02Suche in Google Scholar

[43] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309–316. 10.2307/2007055Suche in Google Scholar

[44] J. Shalika and Y. Tschinkel, Height zeta functions of equivariant compactifications of unipotent groups, Comm. Pure Appl. Math. (2015), 10.1002/cpa.21572. 10.1002/cpa.21572Suche in Google Scholar

[45] Y. Tschinkel, Algebraic varieties with many rational points, Arithmetic geometry, Clay Math. Proc. 8, American Mathematical Society, Providence (2009), 243–334. Suche in Google Scholar

[46] Y. Umezu, Quartic surfaces of elliptic ruled type, Trans. Amer. Math. Soc. 283 (1984), no. 1, 127–143. 10.1090/S0002-9947-1984-0735411-3Suche in Google Scholar

[47] Q. Zhang, Rational connectedness of log Q-Fano varieties, J. reine angew. Math. 590 (2006), 131–142. 10.1515/CRELLE.2006.006Suche in Google Scholar

Received: 2015-05-25
Revised: 2015-09-09
Published Online: 2016-01-20
Published in Print: 2018-10-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0084/html
Button zum nach oben scrollen