Abstract
We prove the Hasse principle and weak approximation for varieties defined over number fields by the nonsingular intersection of pairs of quadratic forms in eight variables. The argument develops work of Colliot-Thélène, Sansuc and Swinnerton-Dyer, and centres on a purely local problem about forms which split off three hyperbolic planes.
References
[1] M. Amer, Quadratische Formen über Funktionenkörpern, Thesis, Johannes Gutenberg-Universität, Mainz 1976. Suche in Google Scholar
[2] B. J. Birch, D. J. Lewis and T. G. Murphy, Simultaneous quadratic forms, Amer. J. Math. 84 (1962), 110–115. 10.2307/2372806Suche in Google Scholar
[3] B. J. Birch and H. P. F. Swinnerton-Dyer, The Hasse problem for rational surfaces, J. reine angew. Math. 274–275 (1975), 164–174. 10.1515/crll.1975.274-275.164Suche in Google Scholar
[4] A. Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 16, A679–A681. Suche in Google Scholar
[5] J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur une variété rationnelle définie sur un corps de nombres, C. R. Acad. Sci. Paris Sér. A 284 (1977), 1215–1218. Suche in Google Scholar
[6] J.-L. Colliot-Thélène, J.-J. Sansuc and H. P. F. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. reine angew. Math. 373 (1987), 37–107. 10.1515/crll.1987.373.37Suche in Google Scholar
[7] J.-L. Colliot-Thélène, J.-J. Sansuc and H. P. F. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. II, J. reine angew. Math. 374 (1987), 72–168. 10.1515/crll.1987.374.72Suche in Google Scholar
[8] D. R. Heath-Brown and L. B. Pierce, Simultaneous integer values of pairs of quadratic forms, J. reine angew. Math. (2015), 10.1515/crelle-2014-0112. 10.1515/crelle-2014-0112Suche in Google Scholar
[9] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827. 10.2307/2372655Suche in Google Scholar
[10] D. B. Leep and L. M. Schueller, A characterization of nonsingular pairs of quadratic forms, J. Algebra Appl. 1 (2002), 391–412. 10.1142/S0219498802000264Suche in Google Scholar
[11] T. A. Springer, Sur les formes quadratiques d’indice zéro, C. R. Acad. Sci. Paris 234 (1952), 1517–1519. Suche in Google Scholar
[12] H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms, Acta Arith. 9 (1964), 261–270. 10.4064/aa-9-3-261-270Suche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Mean curvature self-shrinkers of high genus: Non-compact examples
- Zeros of pairs of quadratic forms
- The Stokes groupoids
- Severi degrees on toric surfaces
- Homology of SL2 over function fields I: Parabolic subcomplexes
- Mean dimension, mean rank, and von Neumann–Lück rank
- Pluriclosed flow on generalized Kähler manifolds with split tangent bundle
- Parabolic curves of diffeomorphisms asymptotic to formal invariant curves
- Xiao’s conjecture for general fibred surfaces
Artikel in diesem Heft
- Frontmatter
- Mean curvature self-shrinkers of high genus: Non-compact examples
- Zeros of pairs of quadratic forms
- The Stokes groupoids
- Severi degrees on toric surfaces
- Homology of SL2 over function fields I: Parabolic subcomplexes
- Mean dimension, mean rank, and von Neumann–Lück rank
- Pluriclosed flow on generalized Kähler manifolds with split tangent bundle
- Parabolic curves of diffeomorphisms asymptotic to formal invariant curves
- Xiao’s conjecture for general fibred surfaces