Startseite The Stokes groupoids
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Stokes groupoids

  • Marco Gualtieri EMAIL logo , Songhao Li und Brent Pym
Veröffentlicht/Copyright: 29. September 2015

Abstract

We construct and describe a family of groupoids over complex curves which serve as the universal domains of definition for solutions to linear ordinary differential equations with singularities. As a consequence, we obtain a direct, functorial method for resumming formal solutions to such equations.

Funding statement: Marco Gualtieri was supported by an NSERC Discovery Grant and an Ontario ERA, Songhao Li was supported by an Ontario Graduate Scholarship, and Brent Pym was supported by an NSERC Canada Graduate Scholarship (Doctoral).

Acknowledgements

We thank Philip Boalch, Nigel Hitchin, Jacques Hurtubise, Alan Weinstein, Michael Wong and Peter Zograf for helpful discussions.

References

[1] W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer, New York 2000. Suche in Google Scholar

[2] W. Balser, W. B. Jurkat and D. A. Lutz, Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), no. 1, 48–94. 10.1016/0022-247X(79)90217-8Suche in Google Scholar

[3] A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel’fand Seminar, Part 1, Adv. Soviet Math. 16, American Mathematical Society, Providence (1993), 1–50. 10.1090/advsov/016.1/01Suche in Google Scholar

[4] P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), no. 2, 137–205. 10.1006/aima.2001.1998Suche in Google Scholar

[5] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange and F. Ehlers, Algebraic D-modules, Perspect. Math. 2, Academic Press, Boston 1987. Suche in Google Scholar

[6] D. Calaque and M. Van den Bergh, Hochschild cohomology and Atiyah classes, Adv. Math. 224 (2010), no. 5, 1839–1889. 10.1016/j.aim.2010.01.012Suche in Google Scholar

[7] M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), no. 4, 681–721. 10.1007/s00014-001-0766-9Suche in Google Scholar

[8] M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620. 10.4007/annals.2003.157.575Suche in Google Scholar

[9] C. Debord, Holonomy groupoids of singular foliations, J. Differential Geom. 58 (2001), no. 3, 467–500. 10.4310/jdg/1090348356Suche in Google Scholar

[10] P. Deligne, B. Malgrange and J.-P. Ramis, Singularités irrégulières, Doc. Math. (Paris) 5, Société Mathématique de France, Paris 2007. Suche in Google Scholar

[11] M. G. Eastwood, Higher order connections, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper No. 082. 10.3842/SIGMA.2009.082Suche in Google Scholar

[12] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 417–436. 10.1093/qjmath/50.200.417Suche in Google Scholar

[13] R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), no. 1, 119–179. 10.1006/aima.2001.2070Suche in Google Scholar

[14] M. Gualtieri and S. Li, Symplectic groupoids of log symplectic manifolds, Int. Math. Res. Not. IMRN 2014 (2014), 3022–3074. 10.1093/imrn/rnt024Suche in Google Scholar

[15] R. C. Gunning, Special coordinate coverings of Riemann surfaces, Math. Ann. 170 (1967), 67–86. 10.1007/BF01362287Suche in Google Scholar

[16] D. Korotkin, Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices, Math. Ann. 329 (2004), no. 2, 335–364. 10.1007/s00208-004-0528-zSuche in Google Scholar

[17] I. Kra, Accessory parameters for punctured spheres, Trans. Amer. Math. Soc. 313 (1989), no. 2, 589–617. 10.1090/S0002-9947-1989-0958896-0Suche in Google Scholar

[18] K. C. H. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc. 27 (1995), no. 2, 97–147. 10.1112/blms/27.2.97Suche in Google Scholar

[19] B. Malgrange and J.-P. Ramis, Fonctions multisommables, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1–2, 353–368. 10.5802/aif.1295Suche in Google Scholar

[20] I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math. 91, Cambridge University Press, Cambridge 2003. 10.1017/CBO9780511615450Suche in Google Scholar

[21] F. W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Wellesley 1997, Reprint of the 1974 original. 10.1201/9781439864548Suche in Google Scholar

[22] Y. Sibuya, Sur réduction analytique d’un système d’équations différentielles ordinaires linéaires contentant un paramètre, J. Fac. Sci. Univ. Tokyo. Sect. I 7 (1958), 527–540. Suche in Google Scholar

[23] G. G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Trans. Camb. Phil. Soc 9 (1847), 379–407.10.1017/CBO9780511702259.018Suche in Google Scholar

[24] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure Appl. Math. 14, Interscience Publishers, New York 1965. Suche in Google Scholar

[25] W. Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications, New York 1987, Reprint of the 1976 edition. Suche in Google Scholar

Received: 2014-1-7
Revised: 2015-3-16
Published Online: 2015-9-29
Published in Print: 2018-6-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0057/html
Button zum nach oben scrollen