Startseite Separable monoids in Dqc(X)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Separable monoids in Dqc(X)

  • Amnon Neeman EMAIL logo
Veröffentlicht/Copyright: 25. August 2015

Abstract

Suppose (𝒯,,𝟙) is a tensor triangulated category. In a number of recent articles Balmer defines and explores the notion of “separable tt-rings” in 𝒯 (in this paper we will call them “separable monoids”). The main result of this article is that, if 𝒯 is the derived quasicoherent category of a noetherian scheme X, then the only separable monoids are the pushforwards by étale maps of smashing Bousfield localizations of the structure sheaf.

Funding statement: The research was partly supported by the Australian Research Council.

Acknowledgements

The author is grateful to Ben Antieau, Paul Balmer, Jack Hall and an anonymous referee for many helpful suggestions of improvements on earlier manuscripts.

References

[1] P. Balmer, Presheaves of triangulated categories and reconstruction of schemes, Math. Ann. 324 (2002), no. 3, 557–580. 10.1007/s00208-002-0353-1Suche in Google Scholar

[2] P. Balmer, The spectrum of prime ideals in tensor triangulated categories, J. reine angew. Math. 588 (2005), 149–168. 10.1515/crll.2005.2005.588.149Suche in Google Scholar

[3] P. Balmer, Supports and filtrations in algebraic geometry and modular representation theory, Amer. J. Math. 129 (2007), no. 5, 1227–1250. 10.1353/ajm.2007.0030Suche in Google Scholar

[4] P. Balmer, Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of endomorphism rings, Algebr. Geom. Topol. 10 (2010), no. 3, 1521–1563. 10.2140/agt.2010.10.1521Suche in Google Scholar

[5] P. Balmer, Separability and triangulated categories, Adv. Math. 226 (2011), no. 5, 4352–4372. 10.1016/j.aim.2010.12.003Suche in Google Scholar

[6] P. Balmer, Descent in triangulated categories, Math. Ann. 353 (2012), no. 1, 109–125. 10.1007/s00208-011-0674-zSuche in Google Scholar

[7] P. Balmer, Modular representations of finite groups with trivial restriction to Sylow subgroups, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2061–2079. 10.4171/JEMS/414Suche in Google Scholar

[8] P. Balmer, Splitting tower and degree of tt-rings, Algebra Number Theory 8 (2014), no. 3, 767–779. 10.2140/ant.2014.8.767Suche in Google Scholar

[9] P. Balmer, Separable extensions in tt-geometry and generalized Quillen stratification, preprint (2014), http://arxiv.org/abs/1309.1808v2. Suche in Google Scholar

[10] P. Balmer, The derived category of an étale extension and the separable Neeman–Thomason theorem, preprint (2014), http://arxiv.org/abs/1408.3376. 10.1017/S1474748014000449Suche in Google Scholar

[11] P. Balmer, I. Dell’Ambrogio and B. Sanders, Restriction to subgroups as étale extensions, in topology, KK-theory and geometry, preprint (2014), http://arxiv.org/abs/1408.2524. Suche in Google Scholar

[12] P. Balmer and G. Favi, Gluing techniques in triangular geometry, Q. J. Math. 58 (2007), no. 4, 415–441. 10.1093/qmath/ham002Suche in Google Scholar

[13] P. Balmer and G. Favi, Generalized tensor idempotents and the telescope conjecture, Proc. Lond. Math. Soc. (3) 102 (2011), no. 6, 1161–1185. 10.1112/plms/pdq050Suche in Google Scholar

[14] S. Biglari, A Künneth formula in tensor triangulated categories, J. Pure Appl. Algebra 210 (2007), no. 3, 645–650. 10.1016/j.jpaa.2006.11.005Suche in Google Scholar

[15] M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compos. Math. 86 (1993), 209–234. Suche in Google Scholar

[16] A. I. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258. 10.17323/1609-4514-2003-3-1-1-36Suche in Google Scholar

[17] I. Dell’Ambrogio, Tensor triangular geometry and KK-theory, J. Homotopy Relat. Struct. 5 (2010), no. 1, 319–358. Suche in Google Scholar

[18] I. Dell’Ambrogio, Localizing subcategories in the bootstrap category of separable C-algebras, J. K-Theory 8 (2011), no. 3, 493–505. 10.1017/is010008010jkt126Suche in Google Scholar

[19] I. Dell’Ambrogio and G. Stevenson, On the derived category of a graded commutative Noetherian ring, J. Algebra 373 (2013), 356–376. 10.1016/j.jalgebra.2012.09.038Suche in Google Scholar

[20] I. Dell’Ambrogio and G. Stevenson, Even more spectra: Tensor triangular comparison maps via graded commutative 2-rings, Appl. Categ. Structures 22 (2014), no. 1, 169–210. 10.1007/s10485-012-9296-1Suche in Google Scholar

[21] I. Dell’Ambrogio and G. Tabuada, Tensor triangular geometry of non-commutative motives, Adv. Math. 229 (2012), no. 2, 1329–1357. 10.1016/j.aim.2011.11.005Suche in Google Scholar

[22] I. Dell’Ambrogio and G. Tabuada, Morita homotopy theory of C*-categories, J. Algebra 398 (2014), 162–199. 10.1016/j.jalgebra.2013.09.022Suche in Google Scholar

[23] F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math 181, Springer, Berlin 1971. 10.1007/BFb0061226Suche in Google Scholar

[24] U. V. Dubey and V. M. Mallick, Spectrum of some triangulated categories, J. Algebra 364 (2012), 90–118. 10.1016/j.jalgebra.2012.04.030Suche in Google Scholar

[25] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergeb. Math. Grenzgeb. (3) 35, Springer, New York 1967. 10.1007/978-3-642-85844-4Suche in Google Scholar

[26] J. Hall, The Balmer spectrum of a tame stack, preprint (2014), http://arxiv.org/abs/1411.6295. 10.2140/akt.2016.1.259Suche in Google Scholar

[27] J. Hall and D. Rydh, Perfect complexes on algebraic stacks, preprint (2014), http://arxiv.org/abs/1405.1887. 10.1112/S0010437X17007394Suche in Google Scholar

[28] S. B. Iyengar, J. Lipman and A. Neeman, Relation between two twisted inverse image pseudofunctors in duality theory, Compos. Math. 151 (2015), no. 4, 735–764. 10.1112/S0010437X14007672Suche in Google Scholar

[29] G. M. Kelly, Doctrinal adjunction, Category seminar (Sydney 1972/1973), Lecture Notes in Math. 420, Springer, Berlin (1974), 257–280. 10.1007/BFb0063105Suche in Google Scholar

[30] A. Krishna, Perfect complexes on Deligne–Mumford stacks and applications, J. K-Theory 4 (2009), no. 3, 559–603. 10.1017/is008008021jkt067Suche in Google Scholar

[31] T.-Y. Lam, Lectures on modules and rings, Grad. Texts in Math. 189, Springer, New York 1999. 10.1007/978-1-4612-0525-8Suche in Google Scholar

[32] A. Neeman, Stable homotopy as a triangulated functor, Invent. Math. 109 (1992), 17–40. 10.1007/BF01232016Suche in Google Scholar

[33] A. Neeman, The connection between the K-theory localisation theorem of Thomason, Trobaugh and Yao, and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547–566. 10.24033/asens.1659Suche in Google Scholar

[34] A. Neeman, Triangulated categories, Ann. of Math. Stud. 148, Princeton University Press, Princeton 2001. 10.1515/9781400837212Suche in Google Scholar

[35] G. Stevenson, Support theory via actions of tensor triangulated categories, J. reine angew. Math. 681 (2013), 219–254. 10.1515/crelle-2012-0025Suche in Google Scholar

[36] G. Stevenson, Subcategories of singularity categories via tensor actions, Compos. Math. 150 (2014), no. 2, 229–272. 10.1112/S0010437X1300746XSuche in Google Scholar

[37] R. W. Thomason, The classification of triangulated subcategories, Compos. Math. 105 (1997), 1–27. 10.1023/A:1017932514274Suche in Google Scholar

[38] The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu, 2015. Suche in Google Scholar

Received: 2014-9-9
Revised: 2015-1-28
Published Online: 2015-8-25
Published in Print: 2018-5-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0039/html
Button zum nach oben scrollen