Startseite Positivity in varieties of maximal Albanese dimension
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Positivity in varieties of maximal Albanese dimension

  • Jungkai Alfred Chen EMAIL logo und Zhi Jiang
Veröffentlicht/Copyright: 31. Juli 2015

Abstract

Given a generically finite morphism f from a smooth projective variety X to an abelian variety A, we show that f*ωX is “sufficiently positive” on A. As an application, we prove that when X is of general type, the global sections of ωX2 define a generically finite map of X. We also study the structure of X when X is of general type and satisfies χ(X,ωX)=0. We formulate a conjectural characterization of such X and prove the conjecture when A has exactly three simple factors.

Acknowledgements

This work started during the second author’s visit to NCTS, Taiwan. The second author thanks NCTS for their warm hospitality and the excellent research atmosphere. The authors thank Olivier Debarre and Christian Schnell for numerous conversations on this subject. We are grateful to the referees for valuable comments and suggestions.

References

[1] C. Birkenhake and H. Lange, Complex abelian varieties, Grundlehren Math. Wiss. 302, Springer, Berlin 1992. 10.1007/978-3-662-02788-2Suche in Google Scholar

[2] J. A. Chen, O. Debarre and Z. Jiang, Varieties with vanishing holomorphic Euler characteristic, J. reine angew. Math. 691 (2014), 203–227. 10.1515/crelle-2012-0073Suche in Google Scholar

[3] J. A. Chen and C. D. Hacon, Pluricanonical maps of varieties of maximal Albanese dimension, Math. Ann. 320 (2001), 367–380. 10.1007/PL00004478Suche in Google Scholar

[4] J. A. Chen and C. D. Hacon, On the irregularity of the image of the Iitaka fibration, Comm. Algebra 32 (2004), 203–215. 10.1081/AGB-120027861Suche in Google Scholar

[5] O. Debarre, On coverings of simple abelian varieties, Bull. Soc. Math. France 134 (2006), 253–260. 10.24033/bsmf.2508Suche in Google Scholar

[6] L. Ein and R. Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), 243–258. 10.1090/S0894-0347-97-00223-3Suche in Google Scholar

[7] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), no. 4, 779–794. 10.2969/jmsj/03040779Suche in Google Scholar

[8] M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389–407. 10.1007/BF01388711Suche in Google Scholar

[9] M. Green and R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87–103. 10.1090/S0894-0347-1991-1076513-1Suche in Google Scholar

[10] L. Guerra and G. Pirola, On the finiteness theorem for rational maps on a variety of general type, Collect. Math. 60 (2009), no. 3, 261–276. 10.1007/BF03191371Suche in Google Scholar

[11] C. D. Hacon, A derived category approach to generic vanishing, J. reine angew. Math. 575 (2004), 173–187. 10.1515/crll.2004.078Suche in Google Scholar

[12] C. D. Hacon and R. Pardini, On the birational geometry of varieties of maximal Albanese dimension, J. reine angew. Math. 546 (2002), 177–199. 10.1515/crll.2002.042Suche in Google Scholar

[13] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., Clarendon Press, Oxford 2006. 10.1093/acprof:oso/9780199296866.001.0001Suche in Google Scholar

[14] Z. Jiang, M. Lahoz and S. Tirabassi, On the Iitaka fibration of varieties of maximal Albanese dimension, Int. Math. Res. Not. IMRN 2013 (2013), no. 13, 2984–3005. 10.1093/imrn/rns131Suche in Google Scholar

[15] J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), 11–42. 10.2307/1971351Suche in Google Scholar

[16] J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), 171–202. 10.2307/1971390Suche in Google Scholar

[17] J. Kollár, Shafarevich maps and automorphic forms, Princeton University Press, Princeton 1995. 10.1515/9781400864195Suche in Google Scholar

[18] S. Mukai, Duality between D(X) and D(X^) with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. 10.1017/S002776300001922XSuche in Google Scholar

[19] G. Pareschi and M. Popa, Regularity on abelian varieties I, J. Amer. Math. Soc. 16 (2003), no. 2, 285–302. 10.1090/S0894-0347-02-00414-9Suche in Google Scholar

[20] G. Pareschi and M. Popa, GV-sheaves, Fourier–Mukai transform, and generic vanishing, Amer. J. Math. 133 (2011), 235–271. 10.1353/ajm.2011.0000Suche in Google Scholar

[21] G. Pareschi and M. Popa, Regularity on abelian varieties III: Relationship with generic vanishing and applications, Grassmannians, moduli spaces and vector bundles (Cambridge, MA, 2011), Clay Math. Proc. 14, American Mathematical Society, Providence (2011), 141–167. Suche in Google Scholar

[22] C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), 361–401. 10.24033/asens.1675Suche in Google Scholar

Received: 2014-5-7
Revised: 2015-1-14
Published Online: 2015-7-31
Published in Print: 2018-3-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0027/html
Button zum nach oben scrollen