Home Lefschetz properties for noncompact arithmetic ball quotients
Article
Licensed
Unlicensed Requires Authentication

Lefschetz properties for noncompact arithmetic ball quotients

  • Arvind N. Nair EMAIL logo
Published/Copyright: March 21, 2015

Abstract

We prove a Lefschetz property for restriction of the cohomology of noncompact congruence ball quotients to ball quotients of smaller dimension, and a Lefschetz property for the cohomology of smooth compactifications of such ball quotients.

Funding statement: The first version of this paper was written in 2007 and it was revised while the author was supported by a Swarnajayanti Fellowship (DST/SF/05/2006).

Acknowledgements

I thank Najmuddin Fakhruddin and T. N. Venkataramana for helpful conversations. I thank the referee for suggestions which have greatly helped to improve the exposition and clarify some arguments, and led me to improve the results.

References

[1] A. Ash, D. Mumford, M. Rapoport and Y.-S. Tai, Smooth compactification of locally symmetric varieties, Math Sci Press, Brookline 1975. Search in Google Scholar

[2] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque 100, Société Mathématique de France, Paris 1982. Search in Google Scholar

[3] J. Bellaiche, Relèvement des formes modulaires de Picard, J. Lond. Math. Soc. (2) 74 (2006), 13–25. 10.1112/S0024610706022824Search in Google Scholar

[4] N. Bergeron, Lefschetz properties for arithmetic real and complex hyperbolic manifolds, Int. Math. Res. Not. IMRN 20 (2003), 1089–1122. 10.1155/S1073792803212253Search in Google Scholar

[5] N. Bergeron, Propriétés de Lefschetz automorphes pour les groupes unitaires et orthogonaux, Mém. Soc. Math. France 106 (2006). 10.24033/msmf.418Search in Google Scholar

[6] N. Bergeron and L. Clozel, Spectre automorphe des variétés hyperboliques et applications topologiques, Astérisque 303, Société Mathématique de France, Paris 2005. Search in Google Scholar

[7] N. Bergeron and L. Clozel, Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math. 192 (2013), 505–532. 10.1007/s00222-012-0415-2Search in Google Scholar

[8] A. Borel and W. Casselman, L2 cohomology of locally symmetric manifolds of finite volume, Duke Math. J. 50 (1983), 625–647. 10.1215/S0012-7094-83-05029-9Search in Google Scholar

[9] L. Clozel and T. N. Venkataramana, Restriction of the holomorphic cohomology of a Shimura variety to a smaller Shimura variety, Duke Math. J. 95 (1998), 51–106. 10.1215/S0012-7094-98-09502-3Search in Google Scholar

[10] P. Deligne, Décompositions dans la catégorie dérivée, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55 part 1, American Mathematical Society, Providence (1994), 115–128. 10.1090/pspum/055.1/1265526Search in Google Scholar

[11] B. Gordon, Canonical models of Picard modular surfaces, The zeta functions of Picard modular surfaces, Centre de Recherches Mathématiques, Université de Montréal, Montréal (1992), 1–29. Search in Google Scholar

[12] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19 (1980), 135–162. 10.1016/0040-9383(80)90003-8Search in Google Scholar

[13] M. Goresky and R. MacPherson, Intersection homology II, Invent. Math. 72 (1983), 77–129. 10.1007/BF01389130Search in Google Scholar

[14] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368. 10.1007/BF01441136Search in Google Scholar

[15] M. Harris and J.-S. Li, A Lefschetz property for subvarieties of Shimura varieties, J. Algebraic Geom. 7 (1998), 77–122. Search in Google Scholar

[16] R. Kottwitz and M. Rapoport, Contribution of the points at the boundary, The zeta functions of Picard modular surfaces, Centre de Recherches Mathématiques, Université de Montréal, Montréal (1992), 111–150. Search in Google Scholar

[17] E. Looijenga, L2 cohomology of locally symmetric varieties, Compos. Math. 23 (1988), 1–20. Search in Google Scholar

[18] E. Looijenga, Compactifications defined by arrangements, I: The ball quotient case, Duke Math. J. 118 (2003), 151–187. 10.1215/S0012-7094-03-11816-5Search in Google Scholar

[19] D. Mumford, Abelian varieties, Tata Inst. Fund. Res. Stud. Math. 5, Oxford University Press, London 1970. Search in Google Scholar

[20] D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272. 10.1007/BF01389790Search in Google Scholar

[21] V. K. Murty and D. Ramakrishnan, The Albanese of unitary Shimura varieties, The zeta functions of Picard modular surfaces, Centre de Recherches Mathématiques, Université de Montréal, Montréal (1992), 445–464. Search in Google Scholar

[22] A. Nair, On the cohomology of reductive Borel–Serre compactifications, preprint (2010), www.math.tifr.res.in/~arvind/preprints.html. Search in Google Scholar

[23] V. Navarro Aznar, Sur la théorie de Hodge des variétés algébriques à singularités isolées, Systémes différentiels et singularités, Astérisque 130, Société Mathématique de France, Paris (1985), 272–307. Search in Google Scholar

[24] T. Oda, A note on the Albanese variety of an arithmetic quotient of the complex hyperball, J. Fac. Sci. Univ. Tokyo 28 (1981), 481–486. Search in Google Scholar

[25] C. Peters and J. Steenbrink, Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3) 52, Springer, Berlin 2008. Search in Google Scholar

[26] R. Pink, Arithmetical compactification of mixed Shimura varieties, Bonner Math. Schriften 209, Universität Bonn, Bonn 1990. Search in Google Scholar

[27] L. Saper and M. Stern, L2 cohomology of arithmetic varieties, Ann. of Math. (2) 139 (1990), 1–69. 10.1073/pnas.84.16.5516Search in Google Scholar PubMed PubMed Central

[28] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss. 270, Springer, Berlin 1985. 10.1007/978-3-642-69971-9Search in Google Scholar

[29] T. N. Venkataramana, Cohomology of compact locally symmetric spaces, Compos. Math. 125 (2001), 221–253. 10.1023/A:1002600432171Search in Google Scholar

[30] R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. reine angew. Math. 391 (1988), 100–156. 10.1515/crll.1988.391.100Search in Google Scholar

[31] S. Zucker, L2 cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982), 169–218. 10.1007/BF01390727Search in Google Scholar

Received: 2013-4-9
Revised: 2014-9-24
Published Online: 2015-3-21
Published in Print: 2017-9-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0131/html
Scroll to top button