Startseite Galois representations and torsion in the coherent cohomology of Hilbert modular varieties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Galois representations and torsion in the coherent cohomology of Hilbert modular varieties

  • Matthew Emerton EMAIL logo , Davide A. Reduzzi und Liang Xiao
Veröffentlicht/Copyright: 20. November 2014

Abstract

Let F be a totally real number field and let p be a prime unramified in F. We prove the existence of Galois pseudo-representations attached to modpm Hecke eigenclasses of paritious weight occurring in the coherent cohomology of Hilbert modular varieties for F of level prime to p.

Award Identifier / Grant number: DMS-100239

Award Identifier / Grant number: DMS-1249548

Award Identifier / Grant number: DMS-1303450

Funding source: Simons Foundation

Award Identifier / Grant number: 278433

Funding statement: The first author was supported in part by NSF grants DMS-100239, DMS-1249548, and DMS-1303450. The third author is partially supported by a grant from the Simons Foundation #278433.

Acknowledgements

We would especially like to thank Frank Calegari and David Geraghty for their interest in and comments on the results of this paper, which originated from their [‘Modularity lifting beyond the Taylor–Wiles method’, preprint 2012, Conjecture A]. We are also grateful to Don Blasius, Chandrashekhar Khare, Kai-Wen Lan, Yichao Tian, and Xinyi Yuan for helpful conversations. We would like to thank Kai-Wen Lan for making available to us a result of [‘Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci’, preprint 2013] which is used in the proof of Lemma 4.2.2.

References

[1] Andreatta F. and Goren E.  Z., Hilbert modular forms: mod p and p-adic aspects, Mem. Amer. Math. Soc. 819. 10.1090/memo/0819Suche in Google Scholar

[2] Andreatta F., Iovita A. and Pilloni V., On overconvergent Hilbert modular cusp forms, preprint 2013. Suche in Google Scholar

[3] Ash A., Galois representations attached to mod p cohomology of GL(n,), Duke Math. J. 65 (1992), 253–255. 10.1215/S0012-7094-92-06510-0Suche in Google Scholar

[4] Ash A., Galois representations and Hecke operators associated with the mod p cohomology of GL(1,) and GL(2,), Proc. Amer. Math. Soc. 125 (1997), 3209–3212. 10.1090/S0002-9939-97-04085-9Suche in Google Scholar

[5] Blasius D. and Rogawski J., Galois representations for Hilbert modular forms, Bull. Amer. Math. Soc. 21 (1989), 65–69. 10.1090/S0273-0979-1989-15763-7Suche in Google Scholar

[6] Calegari F. and Geraghty D., Modularity lifting beyond the Taylor–Wiles method, preprint 2012, http://www.math.northwestern.edu/~fcale/papers/merge.pdf. Suche in Google Scholar

[7] Carayol H., Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 409–468. 10.24033/asens.1512Suche in Google Scholar

[8] Chai C.-L., Appendix to “The Iwasawa conjecture for totally real fields” by A. Wiles: Arithmetic minimal compactification of the Hilbert–Blumenthal moduli spaces, Ann. of Math. (2) 131 (1990), 541–554. 10.2307/1971469Suche in Google Scholar

[9] Deligne P. and Pappas G., Singularités des espaces des modules de Hilbert, en les caractéristiques divisant le discriminant, Compos. Math. 90 (1994), no. 1, 59–79. Suche in Google Scholar

[10] Dimitrov M. and Tilouine J., Variétés et formes modulaires de Hilbert arithmétiques pour Γ1(c,N), Geometric aspects of Dwork theory, Walter de Gruyter, Berlin (2004), 555–614. 10.1515/9783110198133.2.555Suche in Google Scholar

[11] Edixhoven B., The weight in Serre’s conjectures on modular forms, Invent. Math. 109 (1992), 563–594. 10.1007/BF01232041Suche in Google Scholar

[12] Figueiredo L. M., Serre’s conjecture for imaginary quadratic fields, Compos. Math. 118 (1999), 103–122. 10.1023/A:1001739825854Suche in Google Scholar

[13] Goren E. Z., Hasse invariants for Hilbert modular varieties, Israel J. Math. 122 (2001), 157–174. 10.1007/BF02809897Suche in Google Scholar

[14] Goren E. Z., Lectures on Hilbert modular varieties and modular forms, CRM Monogr. Ser. 14, American Mathematical Society, Providence 2002. 10.1090/crmm/014Suche in Google Scholar

[15] Goren E. Z. and Oort F., Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9 (2000), 111–154. Suche in Google Scholar

[16] Grunewald F., Notes on Bianchi manifolds, unpublished 1972. Suche in Google Scholar

[17] Grunewald F., Helling H. and Mennicke J., SL(2) over complex quadratic number fields I, Algebra Logika 17 (1978), 512–580. 10.1007/BF01673825Suche in Google Scholar

[18] Hida H., Hilbert modular forms and Iwasawa theory, Clarendon Press, Oxford 2006. 10.1093/acprof:oso/9780198571025.001.0001Suche in Google Scholar

[19] Jarvis F., On Galois representations associated to Hilbert modular forms, J. reine angew. Math. 491 (1997), 199–216. 10.1515/crll.1997.491.199Suche in Google Scholar

[20] Katz N. M., p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297. 10.1007/BF01390187Suche in Google Scholar

[21] Kisin M. and Lai K. F., Overconvergent Hilbert modular forms, Amer. J. Math. 127 (2005), 735–783. 10.1353/ajm.2005.0027Suche in Google Scholar

[22] Lan K.-W., Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci, preprint 2013, http://math.umn.edu/~kwlan/articles/cpt-ram-ord.pdf. 10.1142/10374Suche in Google Scholar

[23] Ohta M., Hilbert modular forms of weight one and Galois representations, Automorphic forms of several variables (Katata 1983), Progr. Math. 46, Birkhäuser-Verlag, Basel (1984), 333–353. Suche in Google Scholar

[24] Pappas G. and Rapoport M., Local models in the ramified case. II. Splitting models, Duke Math. J. 127 (2005), no. 2, 193–250. 10.1215/S0012-7094-04-12721-6Suche in Google Scholar

[25] Rapoport M., Compactifications de l’espace de modules de Hilbert–Blumenthal, Compos. Math. 36 (1978), 255–335. Suche in Google Scholar

[26] Reduzzi D. A. and Xiao L., Partial Hasse invariants on splitting models of Hilbert modular varieties, preprint 2014, http://arxiv.org/abs/1405.6349. Suche in Google Scholar

[27] Robert G., Congruences entre séries d’Eisenstein, dans le cas supersingulier, Invent. Math. 61 (1980), 103–158. 10.1007/BF01390118Suche in Google Scholar

[28] Rogawski J. and Tunnell J., On Artin l-functions associated to Hilbert modular forms of weight 1, Invent. Math. 74 (1983), 1–42. 10.1007/BF01388529Suche in Google Scholar

[29] Rouquier R., Caractérisation des caractères et pseudo-caractères, J. Algebra 180 (1996), 571–586. 10.1006/jabr.1996.0083Suche in Google Scholar

[30] Sasaki S., Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, preprint 2014. 10.1007/s00222-018-0825-xSuche in Google Scholar

[31] Scholze P., On torsion in the cohomology of locally symmetric varieties, preprint 2013, http://arxiv.org/abs/1306.2070. Suche in Google Scholar

[32] Serre J.-P., Congruences et formes modulaires (d’après H. P. F. Swinnerton-Dyer), Séminaire N. Bourbaki 1971/72, Exposé 416, Lecture Notes in Math. 317, Springer-Verlag, Berlin (1973), 319–338. 10.1007/978-3-642-39816-2_95Suche in Google Scholar

[33] Serre J.-P., Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996), 281–299.10.1007/BF02761043Suche in Google Scholar

[34] Swinnerton-Dyer H. P. F., On l-adic representations and congruences for coefficients of modular forms, Proceedings of the 1972 Antwerp international summer school on modular forms, Lecture Notes in Math. 350, Springer-Verlag, Berlin (1973), 1–55. 10.1007/978-3-540-37802-0_1Suche in Google Scholar

[35] Taylor R., On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265–280. 10.1007/BF01388853Suche in Google Scholar

[36] Taylor R., Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), 281–332. 10.1215/S0012-7094-91-06312-XSuche in Google Scholar

[37] Wiles A., On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), 529–573. 10.1007/BF01394275Suche in Google Scholar

Received: 2013-9-16
Revised: 2014-7-10
Published Online: 2014-11-20
Published in Print: 2017-5-1

© 2017 by De Gruyter

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0092/html?lang=de
Button zum nach oben scrollen