Abstract
Let F be a totally real number field and let p be a prime unramified in
F. We prove the existence of Galois pseudo-representations attached to
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-100239
Award Identifier / Grant number: DMS-1249548
Award Identifier / Grant number: DMS-1303450
Funding source: Simons Foundation
Award Identifier / Grant number: 278433
Funding statement: The first author was supported in part by NSF grants DMS-100239, DMS-1249548, and DMS-1303450. The third author is partially supported by a grant from the Simons Foundation #278433.
Acknowledgements
We would especially like to thank Frank Calegari and David Geraghty for their interest in and comments on the results of this paper, which originated from their [‘Modularity lifting beyond the Taylor–Wiles method’, preprint 2012, Conjecture A]. We are also grateful to Don Blasius, Chandrashekhar Khare, Kai-Wen Lan, Yichao Tian, and Xinyi Yuan for helpful conversations. We would like to thank Kai-Wen Lan for making available to us a result of [‘Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci’, preprint 2013] which is used in the proof of Lemma 4.2.2.
References
[1] Andreatta F. and Goren E. Z., Hilbert modular forms: mod p and p-adic aspects, Mem. Amer. Math. Soc. 819. 10.1090/memo/0819Suche in Google Scholar
[2] Andreatta F., Iovita A. and Pilloni V., On overconvergent Hilbert modular cusp forms, preprint 2013. Suche in Google Scholar
[3]
Ash A.,
Galois representations attached to mod p cohomology of
[4]
Ash A.,
Galois representations and Hecke operators associated with the mod p cohomology of
[5] Blasius D. and Rogawski J., Galois representations for Hilbert modular forms, Bull. Amer. Math. Soc. 21 (1989), 65–69. 10.1090/S0273-0979-1989-15763-7Suche in Google Scholar
[6] Calegari F. and Geraghty D., Modularity lifting beyond the Taylor–Wiles method, preprint 2012, http://www.math.northwestern.edu/~fcale/papers/merge.pdf. Suche in Google Scholar
[7] Carayol H., Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 409–468. 10.24033/asens.1512Suche in Google Scholar
[8] Chai C.-L., Appendix to “The Iwasawa conjecture for totally real fields” by A. Wiles: Arithmetic minimal compactification of the Hilbert–Blumenthal moduli spaces, Ann. of Math. (2) 131 (1990), 541–554. 10.2307/1971469Suche in Google Scholar
[9] Deligne P. and Pappas G., Singularités des espaces des modules de Hilbert, en les caractéristiques divisant le discriminant, Compos. Math. 90 (1994), no. 1, 59–79. Suche in Google Scholar
[10]
Dimitrov M. and Tilouine J.,
Variétés et formes modulaires de Hilbert arithmétiques pour
[11] Edixhoven B., The weight in Serre’s conjectures on modular forms, Invent. Math. 109 (1992), 563–594. 10.1007/BF01232041Suche in Google Scholar
[12] Figueiredo L. M., Serre’s conjecture for imaginary quadratic fields, Compos. Math. 118 (1999), 103–122. 10.1023/A:1001739825854Suche in Google Scholar
[13] Goren E. Z., Hasse invariants for Hilbert modular varieties, Israel J. Math. 122 (2001), 157–174. 10.1007/BF02809897Suche in Google Scholar
[14] Goren E. Z., Lectures on Hilbert modular varieties and modular forms, CRM Monogr. Ser. 14, American Mathematical Society, Providence 2002. 10.1090/crmm/014Suche in Google Scholar
[15] Goren E. Z. and Oort F., Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9 (2000), 111–154. Suche in Google Scholar
[16] Grunewald F., Notes on Bianchi manifolds, unpublished 1972. Suche in Google Scholar
[17]
Grunewald F., Helling H. and Mennicke J.,
[18] Hida H., Hilbert modular forms and Iwasawa theory, Clarendon Press, Oxford 2006. 10.1093/acprof:oso/9780198571025.001.0001Suche in Google Scholar
[19] Jarvis F., On Galois representations associated to Hilbert modular forms, J. reine angew. Math. 491 (1997), 199–216. 10.1515/crll.1997.491.199Suche in Google Scholar
[20]
Katz N. M.,
p-adic
[21] Kisin M. and Lai K. F., Overconvergent Hilbert modular forms, Amer. J. Math. 127 (2005), 735–783. 10.1353/ajm.2005.0027Suche in Google Scholar
[22] Lan K.-W., Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci, preprint 2013, http://math.umn.edu/~kwlan/articles/cpt-ram-ord.pdf. 10.1142/10374Suche in Google Scholar
[23] Ohta M., Hilbert modular forms of weight one and Galois representations, Automorphic forms of several variables (Katata 1983), Progr. Math. 46, Birkhäuser-Verlag, Basel (1984), 333–353. Suche in Google Scholar
[24] Pappas G. and Rapoport M., Local models in the ramified case. II. Splitting models, Duke Math. J. 127 (2005), no. 2, 193–250. 10.1215/S0012-7094-04-12721-6Suche in Google Scholar
[25] Rapoport M., Compactifications de l’espace de modules de Hilbert–Blumenthal, Compos. Math. 36 (1978), 255–335. Suche in Google Scholar
[26] Reduzzi D. A. and Xiao L., Partial Hasse invariants on splitting models of Hilbert modular varieties, preprint 2014, http://arxiv.org/abs/1405.6349. Suche in Google Scholar
[27] Robert G., Congruences entre séries d’Eisenstein, dans le cas supersingulier, Invent. Math. 61 (1980), 103–158. 10.1007/BF01390118Suche in Google Scholar
[28] Rogawski J. and Tunnell J., On Artin l-functions associated to Hilbert modular forms of weight 1, Invent. Math. 74 (1983), 1–42. 10.1007/BF01388529Suche in Google Scholar
[29] Rouquier R., Caractérisation des caractères et pseudo-caractères, J. Algebra 180 (1996), 571–586. 10.1006/jabr.1996.0083Suche in Google Scholar
[30] Sasaki S., Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, preprint 2014. 10.1007/s00222-018-0825-xSuche in Google Scholar
[31] Scholze P., On torsion in the cohomology of locally symmetric varieties, preprint 2013, http://arxiv.org/abs/1306.2070. Suche in Google Scholar
[32] Serre J.-P., Congruences et formes modulaires (d’après H. P. F. Swinnerton-Dyer), Séminaire N. Bourbaki 1971/72, Exposé 416, Lecture Notes in Math. 317, Springer-Verlag, Berlin (1973), 319–338. 10.1007/978-3-642-39816-2_95Suche in Google Scholar
[33] Serre J.-P., Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996), 281–299.10.1007/BF02761043Suche in Google Scholar
[34] Swinnerton-Dyer H. P. F., On l-adic representations and congruences for coefficients of modular forms, Proceedings of the 1972 Antwerp international summer school on modular forms, Lecture Notes in Math. 350, Springer-Verlag, Berlin (1973), 1–55. 10.1007/978-3-540-37802-0_1Suche in Google Scholar
[35] Taylor R., On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265–280. 10.1007/BF01388853Suche in Google Scholar
[36] Taylor R., Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), 281–332. 10.1215/S0012-7094-91-06312-XSuche in Google Scholar
[37] Wiles A., On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), 529–573. 10.1007/BF01394275Suche in Google Scholar
© 2017 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- On algebraic relations between solutions of a generic Painlevé equation
- A note on Ricci flow with Ricci curvature bounded below
- The Yang–Mills gradient flow and loop spaces of compact Lie groups
- Galois representations and torsion in the coherent cohomology of Hilbert modular varieties
- On Lagrange’s four squares theorem with almost prime variables
- Positivity criteria for log canonical divisors and hyperbolicity
- Corps de Siegel
- The Grothendieck–Teichmüller group action on differential forms and formality morphisms of chains
- Quantum spectral curve for the Gromov–Witten theory of the complex projective line
- Erratum to On the K-theory of groups with finite asymptotic dimension (J. reine angew. Math. 612 (2007), 35–57)
Artikel in diesem Heft
- Frontmatter
- On algebraic relations between solutions of a generic Painlevé equation
- A note on Ricci flow with Ricci curvature bounded below
- The Yang–Mills gradient flow and loop spaces of compact Lie groups
- Galois representations and torsion in the coherent cohomology of Hilbert modular varieties
- On Lagrange’s four squares theorem with almost prime variables
- Positivity criteria for log canonical divisors and hyperbolicity
- Corps de Siegel
- The Grothendieck–Teichmüller group action on differential forms and formality morphisms of chains
- Quantum spectral curve for the Gromov–Witten theory of the complex projective line
- Erratum to On the K-theory of groups with finite asymptotic dimension (J. reine angew. Math. 612 (2007), 35–57)