Startseite The closure of spectral data for constant mean curvature tori in 𝕊3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The closure of spectral data for constant mean curvature tori in 𝕊3

  • Emma Carberry EMAIL logo und Martin Ulrich Schmidt
Veröffentlicht/Copyright: 31. August 2014

Abstract

The spectral curve correspondence for finite-type solutions of the sinh- Gordon equation describes how they arise from and give rise to hyperelliptic curves with a real structure. Constant mean curvature (CMC) 2-tori in 𝕊3 result when these spectral curves satisfy periodicity conditions. We prove that the spectral curves of CMC tori are dense in the space of smooth spectral curves of finite-type solutions of the sinh-Gordon equation. One consequence of this is the existence of countably many real n-dimensional families of CMC tori in 𝕊3 for each positive integer n.

References

[1] Bobenko A. I., Surfaces of constant mean curvature and integrable equations, Russian Math. Surveys 46 (1991), no. 4, 1–45. 10.1070/RM1991v046n04ABEH002826Suche in Google Scholar

[2] Carberry E., Minimal tori in 𝕊3, Pacific J. Math. 233 (2007), no. 1, 41–69. 10.2140/pjm.2007.233.41Suche in Google Scholar

[3] Carberry E. and McIntosh I., Special Lagrangian T2-cones in ℂ3 exist for all spectral genera, J. Lond. Math. Soc. (2) 69 (2004), 531–544. 10.1112/S0024610703005039Suche in Google Scholar

[4] Ercolani N. M., Knörrer H. and Trubowitz E., Hyperelliptic curves that generate constant mean curvature tori in ℝ3, Integrable systems (Luminy 1991), Progr. Math. 115, Birkhäuser-Verlag, Basel (1993), 81–114. Suche in Google Scholar

[5] Haskins M., The geometric complexity of special Lagrangian T2-cones, Invent. Math. 157 (2004), no. 1, 11–70. 10.1007/s00222-003-0348-xSuche in Google Scholar

[6] Hitchin N., Harmonic maps from a 2-torus to the 3-sphere, J. Differential Geom. 31 (1990), 627–710. 10.4310/jdg/1214444631Suche in Google Scholar

[7] Jaggy C., On the classification of constant mean curvature tori in ℝ3, Comment. Math. Helv. 69 (1994), no. 4, 640–658. 10.1007/BF02564507Suche in Google Scholar

[8] Kilian M., Schmidt M. U. and Schmitt N., Flows of constant mean curvature tori in the 3-sphere: The equivariant case, J. reine angew. Math. (2013), 10.1515/crelle-2013-0079. 10.1515/crelle-2013-0079Suche in Google Scholar

[9] Pinkall U. and Sterling I., On the classification of constant mean curvature tori, Ann. of Math. (2) 130 (1989), no. 2, 407–451. 10.2307/1971425Suche in Google Scholar

Received: 2013-8-29
Published Online: 2014-8-31
Published in Print: 2016-12-1

© 2016 by De Gruyter

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0068/html
Button zum nach oben scrollen