Startseite Vector bundles associated to Lie algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vector bundles associated to Lie algebras

  • Jon F. Carlson EMAIL logo , Eric M. Friedlander und Julia Pevtsova
Veröffentlicht/Copyright: 9. April 2014

Abstract

We introduce and investigate a functorial construction which associates coherent sheaves to finite dimensional (restricted) representations of a restricted Lie algebra 𝔤. These are sheaves on locally closed subvarieties of the projective variety 𝔼(r,𝔤) of elementary subalgebras of 𝔤 of dimension r. We show that representations of constant radical or socle rank studied in [5] which generalize modules of constant Jordan type lead to algebraic vector bundles on 𝔼(r,𝔤). When 𝔤 is the Lie algebra of an algebraic group G, rational representations of G enable us to realize familiar algebraic vector bundles on G-orbits of 𝔼(r,𝔤).

Award Identifier / Grant number: DMS-1001102

Award Identifier / Grant number: DMS-0909314

Award Identifier / Grant number: DMS-0966589

Award Identifier / Grant number: DMS-0800930

Award Identifier / Grant number: DMS-0953011

Funding statement: The first author was partially supported by the NSF grant DMS-1001102. The second author was partially supported by the NSF grants DMS-0909314 and DMS-0966589. The third author was partially supported by the NSF grants DMS-0800930 and DMS-0953011.

We thank Burt Totaro for providing a reference necessary for simplifying our geometric assumptions in Section 3 and thank George McNinch for helpful discussions about separability of orbit maps. We are especially grateful to the referee for a careful reading of our paper.

References

[1] Billey S. and Lakshmibai V., Singular loci of Schubert varieties, Progr. Math. 182, Birkhäuser, Boston 2000. 10.1007/978-1-4612-1324-6Suche in Google Scholar

[2] Borel A., Linear algebraic groups, Grad. Texts in Math. 126, Springer, New York 1991. 10.1007/978-1-4612-0941-6Suche in Google Scholar

[3] Bourbaki N., Groupes et algebres de Lie, Chaps. 4, 5 et 6, Masson, Paris 1981. Suche in Google Scholar

[4] Carlson J. F., Friedlander E. M. and Pevtsova J., Representations of elementary abelian p-groups and bundles on Grassmannians, Adv. Math. 229 (2012), 2985–3051. 10.1016/j.aim.2011.11.004Suche in Google Scholar

[5] Carlson J. F., Friedlander E. M. and Pevtsova J., Elementary subalgebras of Lie algebras, preprint 2014. 10.1016/j.jalgebra.2014.10.015Suche in Google Scholar

[6] Demazure M. and Gabriel P., Groupes algébriques, Tome I, North Holland 1970. Suche in Google Scholar

[7] Erdmann K. and Wildon M., Introduction to Lie algebras, Springer Undergrad. Math. Ser., Springer, Berlin 2006. 10.1007/1-84628-490-2Suche in Google Scholar

[8] Friedlander E. M. and Parshall B., Cohomology of algebraic and related finite groups, Invent. Math. 74 (1983), 85–117. 10.1007/BF01388532Suche in Google Scholar

[9] Friedlander E. M. and Pevtsova J., Generalized support varieties for finite group schemes, Doc. Math. Extra Vol. (2010), 197–222. 10.4171/dms/5/6Suche in Google Scholar

[10] Friedlander E. M. and Pevtsova J., Constructions for infinitesimal group schemes, Trans. Amer. Math. Soc. 363 (2011), no. 11, 6007–6061. 10.1090/S0002-9947-2011-05330-4Suche in Google Scholar

[11] Hartshorne R., Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar

[12] Jantzen J. C., Representations of algebraic groups, 2nd ed., Math. Surveys Monogr. 107, American Mathematical Society, Providence 2003. Suche in Google Scholar

[13] Jantzen J. C., Nilpotent orbits in representation theory, Lie theory: Lie algebras and representations, Birkhäuser, Boston (2004), 1–211. 10.1007/978-0-8176-8192-0_1Suche in Google Scholar

[14] McNinch G., Abelian reductive subgroups of reductive groups, J. Pure Appl. Algebra 167 (2002), 269–300. 10.1016/S0022-4049(01)00038-XSuche in Google Scholar

[15] Panin I., On the algebraic K-theory of twisted flag varieties, K-theory 8 (1994), 541–585. 10.1007/BF00961020Suche in Google Scholar

[16] Richardson R., Röhrle G. and Steinberg R., Parabolic subgroups with Abelian unipotent radical, Invent. Math. 110 (1992), 649–671. 10.1007/BF01231348Suche in Google Scholar

[17] Seligman G. B., On Lie algebras of prime characteristic, Mem. Amer. Math. Soc. 19 (1965), 1–83. 10.1090/memo/0019Suche in Google Scholar

[18] Springer T., Linear algebraic groups, 2nd ed., Progr. Math. 9, Birkhäuser, Boston 1998. 10.1007/978-0-8176-4840-4Suche in Google Scholar

[19] Suslin A., Friedlander E. and Bendel C., Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), 693–728. 10.1090/S0894-0347-97-00240-3Suche in Google Scholar

Received: 2012-8-19
Revised: 2013-12-30
Published Online: 2014-4-9
Published in Print: 2016-7-1

© 2016 by De Gruyter

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0007/html
Button zum nach oben scrollen