Startseite Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity

  • Sun-Sig Byun EMAIL logo , Jihoon Ok und Seungjin Ryu
Veröffentlicht/Copyright: 26. Februar 2014

Abstract

We consider a nonlinear elliptic problem in divergence form, with nonstandard growth conditions, on a bounded domain. We obtain the global Calderón–Zygmund type gradient estimates for the weak solution of such a problem in the setting of Lebesgue and Sobolev spaces with variable p(x) exponents, in the case that the nonlinearity of the coefficients is allowed to be discontinuous and the domain goes beyond the Lipschitz category. We assume that the nonlinearity has small BMO semi-norms and the boundary of the domain satisfies the so-called δ-Reifenberg flatness condition. These conditions on the nonlinearity and the boundary are weaker than those reported in other studies in the literature.

Award Identifier / Grant number: 2012-047030

Funding statement:

Received: 2012-10-12
Revised: 2014-1-16
Published Online: 2014-2-26
Published in Print: 2016-6-1

© 2016 by De Gruyter

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0004/html
Button zum nach oben scrollen