Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Transitive actions of locally compact groups on locally contractible spaces
Ein Erratum zu diesem Artikel finden Sie hier:
https://doi.org/10.1515/crelle-2013-5001
Veröffentlicht/Copyright:
21. Juni 2013
Abstract
Suppose that X = G/K is the quotient of a locally compact group by a closed subgroup. If X is locally contractible and connected, we prove that X is a manifold. If the G-action is faithful, then G is a Lie group.
We thank S. Antonyan, S. Morris, and the referee for their helpful comments. Also, we are grateful to R. McCallum for his careful reading of the manuscript.
Received: 2013-1-22
Revised: 2013-4-18
Published Online: 2013-6-21
Published in Print: 2015-5-1
© 2015 by De Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Frontmatter
- Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes
- Maximal minors and linear powers
- Asymptotics of random Betti tables
- Finite Weyl groupoids
- Bogomolov–Sommese vanishing on log canonical pairs
- A uniqueness theorem for Frobenius manifolds and Gromov–Witten theory for orbifold projective lines
- From algebraic cobordism to motivic cohomology
- Transitive actions of locally compact groups on locally contractible spaces
- Erratum to Transitive actions of locally compact groups on locally contractible spaces (J. reine angew. Math. 702 (2015), 227–243)
Artikel in diesem Heft
- Frontmatter
- Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes
- Maximal minors and linear powers
- Asymptotics of random Betti tables
- Finite Weyl groupoids
- Bogomolov–Sommese vanishing on log canonical pairs
- A uniqueness theorem for Frobenius manifolds and Gromov–Witten theory for orbifold projective lines
- From algebraic cobordism to motivic cohomology
- Transitive actions of locally compact groups on locally contractible spaces
- Erratum to Transitive actions of locally compact groups on locally contractible spaces (J. reine angew. Math. 702 (2015), 227–243)