Abstract.
We study the asymptotic growth of the p-primary component of the Šafarevič–Tate group in the cyclotomic direction at any odd prime of good supersingular reduction, generalizing work of Kobayashi. As an application, we explain formulas obtained by Kurihara, Perrin-Riou, and Nasybullin in terms of Iwasawa invariants of modified Selmer groups.
Received: 2011-06-24
Revised: 2011-12-28
Published Online: 2013-08-03
Published in Print: 2013-08-01
© 2013 by Walter de Gruyter Berlin Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Masthead
- The Witten–Reshetikhin–Turaev invariants of finite order mapping tori I
- Birational invariants and 𝔸1-connectedness
- Sums of large global solutions to the incompressible Navier–Stokes equations
- Algebraic monodromy groups of vector bundles on p-adic curves
- The second Stiefel–Whitney class of ℓ-adic cohomology
- A transcendental approach to Kollár's injectivity theorem II
- Critical zeros of Dirichlet L-functions
- The Šafarevič–Tate group in cyclotomic ℤp-extensions at supersingular primes
- Support theory via actions of tensor triangulated categories
Artikel in diesem Heft
- Masthead
- The Witten–Reshetikhin–Turaev invariants of finite order mapping tori I
- Birational invariants and 𝔸1-connectedness
- Sums of large global solutions to the incompressible Navier–Stokes equations
- Algebraic monodromy groups of vector bundles on p-adic curves
- The second Stiefel–Whitney class of ℓ-adic cohomology
- A transcendental approach to Kollár's injectivity theorem II
- Critical zeros of Dirichlet L-functions
- The Šafarevič–Tate group in cyclotomic ℤp-extensions at supersingular primes
- Support theory via actions of tensor triangulated categories