Startseite Polygeneration process design to recover waste cold energy in LNG regasification terminals: simulation-based optimization approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polygeneration process design to recover waste cold energy in LNG regasification terminals: simulation-based optimization approach

  • Hrithika Ganta und Arnab Dutta ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Liquefied Natural Gas (LNG) has emerged as a key energy vector owing to its lower carbon footprint. Calorific value specifications at regasification terminals necessitates pre-processing of LNG prior to regasification. Cryogenic distillation for heavy hydrocarbon removal (HHR) from LNG to lower the calorific value utilizes a portion of the available LNG cold energy. However, substantial amount of cold energy remains unutilized in HHR process. To reverse this wastage, a polygeneration process encompassing Organic Rankine Cycle (ORC) for power generation along with diverse refrigeration strategies is proposed following the HHR process. A simulation-based optimization framework is developed to maximize the net present value (NPV) of the proposed polygeneration process and investigate its performance across different LNG feed conditions. Irrespective of LNG feed conditions, the proposed process is found to be technoeconomically feasible resulting in a positive NPV. The optimal process not only generates electricity but also refrigeration sufficient to cool 1,200 data center racks at 10  °C and a cryogenic warehouse of 2,000 m3 at 50  °C. The polygeneration process recovers substantial amount of the remaining cold energy after the HHR process resulting in a CO2 avoidance of 12.8 kg-CO2/ton-LNG, thereby significantly augmenting the technoeconomics and sustainability of LNG value chain.


Corresponding author: Arnab Dutta, Chemical Engineering Department, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Medchal District, Hyderabad, 500078, Telangana, India, E-mail:

Award Identifier / Grant number: SRG/2022/000756

Award Identifier / Grant number: BITS/GAU/RIG/2020/H0760

Acknowledgment

The authors would like to thank DST-SERB (SRG/2022/000756) and Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, India (Research Initiation Grant: BITS/GAU/RIG/2020/H0760) for providing financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: DST-SERB (SRG/2022/000756) Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, India (Research Initiation Grant: BITS/GAU/RIG/2020/H0760).

  7. Data availability: Not applicable.

References

1. Energy Agency I. World energy outlook 2024; 2024. www.iea.org/terms.Suche in Google Scholar

2. Sakata, S, Aa and, RP. Greenhouse Gas Emissions Data: Concepts and Data Availability; 2024, 2024/03. https://doi.org/10.1787/b3e6c074-en.Suche in Google Scholar

3. Gas exporting countries forum global gas outlook 2050 8th edition. Published online 2024. [Accessed 23 January 2025]. www.gecf.org.Suche in Google Scholar

4. Mazyan, W, Ahmadi, A, Ahmed, H, Hoorfar, M. Market and technology assessment of natural gas processing: a review. J Nat Gas Sci Eng 2016;30:487–514. https://doi.org/10.1016/j.jngse.2016.02.010.Suche in Google Scholar

5. The future of natural gas - IOAGPL. [Accessed 28 January 2025]. https://ioagpl.com/the-future-of-natural-gas/.Suche in Google Scholar

6. Lee, I, Park, J, Moon, I. Key issues and challenges on the liquefied natural gas value chain: a review from the process systems engineering point of view. Ind Eng Chem Res 2018;57:5805–18. https://doi.org/10.1021/acs.iecr.7b03899.Suche in Google Scholar

7. Qyyum, MA, Qadeer, K, Lee, M. Comprehensive review of the design optimization of natural gas liquefaction processes: current status and perspectives. Ind Eng Chem Res 2018;57:5819–44. https://doi.org/10.1021/acs.iecr.7b03630.Suche in Google Scholar

8. He, T, Chong, ZR, Zheng, J, Ju, Y, Linga, P. LNG cold energy utilization: prospects and challenges. Energy 2019;170:557–68. https://doi.org/10.1016/j.energy.2018.12.170.Suche in Google Scholar

9. Shingan, B, Parthasarthy, V. Recent progress in cold utilization of liquefied natural gas. Chem Eng Technol 2023;46:1823–37. https://doi.org/10.1002/ceat.202200484.Suche in Google Scholar

10. Noor Akashah, MH, Mohammad Rozali, NE, Mahadzir, S, Liew, PY. Utilization of cold energy from LNG regasification process: a review of current trends. Processes 2023;11. https://doi.org/10.3390/pr11020517.Suche in Google Scholar

11. Kanbur, BB, Xiang, L, Dubey, S, Choo, FH, Duan, F. Cold utilization systems of LNG: a review. Renew Sustain Energy Rev 2017;79:1171–88. https://doi.org/10.1016/j.rser.2017.05.161.Suche in Google Scholar

12. Hamayun, MH, Ramzan, N, Faheem, M. Exergoeconomic analysis of an LNG integrated - air separation process. Kor J Chem Eng 2023;40:3017–28. https://doi.org/10.1007/s11814-023-1567-z.Suche in Google Scholar

13. Kim, D, Giametta, REH, Gundersen, T. Optimal use of liquefied natural gas (LNG) cold energy in air separation units. Ind Eng Chem Res 2018;57:5914–23. https://doi.org/10.1021/acs.iecr.7b04282.Suche in Google Scholar

14. Pan, J, Li, M, Li, R, Tang, L, Bai, J. Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic rankine cycle and direct cooling. Appl Therm Eng 2022;213. https://doi.org/10.1016/j.applthermaleng.2022.118672.Suche in Google Scholar

15. Nasir, MT, Kim, M, Lee, J, Kim, S, Kim, KC. A review on technologies with electricity generation potentials using liquified natural gas regasification cold energy. Front Energy 2023;17:332–79. https://doi.org/10.1007/s11708-023-0863-y.Suche in Google Scholar

16. Pan, J, Cao, Q, Zhang, J, Li, M, Tang, L, Li, R, et al.. Design and optimization of a combined supercritical CO2 recompression brayton/kalina cycle by using solar energy and LNG cold energy. Appl Therm Eng 2024;247. https://doi.org/10.1016/j.applthermaleng.2024.123106.Suche in Google Scholar

17. Shingan, B, Vijay, P, Pandian, K. Advanced design of power generation cycle with cold utilization from LNG. Arabian J Sci Eng 2023;48:16973–88. https://doi.org/10.1007/s13369-023-08301-x.Suche in Google Scholar

18. Marchiori, G, Giudici, M, Ruffato, G, Astolfi, M. Cold energy recovery in LNG plants with organic rankine cycle. In: . 7th International Seminar on ORC Power Systems; 2024:626–35 pp. September 4 – 6, 2023, Seville, Spain. https://doi.org/10.12795/9788447227457_109.Suche in Google Scholar

19. Dutta, A, Karimi, IA, Farooq, S. Economic feasibility of power generation by recovering cold energy during LNG (liquefied natural gas) regasification. ACS Sustainable Chem Eng 2018;6:10687–95. https://doi.org/10.1021/acssuschemeng.8b02020.Suche in Google Scholar

20. Bao, J, Lin, Y, Zhang, R, Zhang, N, He, G. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation rankine cycle (TCRC) system. Energy Convers Manag 2017;143:312–25. https://doi.org/10.1016/j.enconman.2017.04.018.Suche in Google Scholar

21. Lee, U, Mitsos, A. Optimal multicomponent working fluid of organic rankine cycle for exergy transfer from liquefied natural gas regasification. Energy 2017;127:489–501. https://doi.org/10.1016/j.energy.2017.03.126.Suche in Google Scholar

22. Srilekha, M, Dutta, A. Design and optimization of boil-off gas recondensation process by recovering waste cold energy in LNG regasification terminals. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2024.03.041. Published online March 2024.Suche in Google Scholar

23. Shingan, B, Vijay, P, Pandiyan, K. Cryogenic air separation process integrated with cold utilization of liquefied natural gas: design, simulation and performance analysis. Arabian J Sci Eng 2023;48:16921–40. https://doi.org/10.1007/s13369-023-08218-5.Suche in Google Scholar

24. Riaz, A, Qyyum, MA, Min, S, Lee, S, Lee, M. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: energy and exergy perspectives. Appl Energy 2021;301. https://doi.org/10.1016/j.apenergy.2021.117471.Suche in Google Scholar

25. Cho, S, Park, J, Noh, W, Lee, I, Moon, I. Developed hydrogen liquefaction process using liquefied natural gas cold energy: design, energy optimization, and techno-economic feasibility. Int J Energy Res 2021;45:14745–60. https://doi.org/10.1002/er.6751.Suche in Google Scholar

26. Chang, J, Zuo, J, Lu, KJ, Chung, TS. Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy. Desalination 2019;449:16–25. https://doi.org/10.1016/j.desal.2018.10.008.Suche in Google Scholar

27. Lee, SH, Park, K. Conceptual design and economic analysis of a novel cogeneration desalination process using LNG based on clathrate hydrate. Desalination 2021;498:114703. https://doi.org/10.1016/j.desal.2020.114703.Suche in Google Scholar

28. Lee, S. Multi-parameter optimization of cold energy recovery in cascade rankine cycle for LNG regasification using genetic algorithm. Energy 2017;118:776–82. https://doi.org/10.1016/j.energy.2016.10.118.Suche in Google Scholar

29. Daniarta, S, Błasiak, P, Kolasiński, P, Imre, AR. Sustainability by means of cold energy utilisation-to-power conversion: a review. Renew Sustain Energy Rev 2024;205. https://doi.org/10.1016/j.rser.2024.114833.Suche in Google Scholar

30. Atienza-Márquez, A, Ayou, DS, Bruno, JC, Coronas, A. Energy polygeneration systems based on LNG-regasification: comprehensive overview and techno-economic feasibility. Therm Sci Eng Prog 2020;20. https://doi.org/10.1016/j.tsep.2020.100677.Suche in Google Scholar

31. Jasim, DJ, Al-Rubaye, AH, Kolsi, L, Khan, SU, Aich, W, Marefati, M, et al.. A fuel gas waste heat recovery-based multigeneration plant integrated with a LNG cold energy process, a water desalination unit, and a CO2 separation process. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e26692.Suche in Google Scholar PubMed PubMed Central

32. Baigh, TA, Saif, MJ, Mustakim, A, Nanzeeba, F, Khan, Y, Ehsan, MM, et al.. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e35748.Suche in Google Scholar PubMed PubMed Central

33. Srilekha, M, Dutta, A. Enhancing sustainability of natural gas value chain via waste cold recovery. Mater Today Proc 2023;72:162–8. https://doi.org/10.1016/j.matpr.2022.06.378.Suche in Google Scholar

34. Uwitonze, H, Han, S, Jangryeok, C, Hwang, KS. Design process of LNG heavy hydrocarbons fractionation: low LNG temperature recovery. Chem Eng Process Process Intensif 2014;85:187–95. https://doi.org/10.1016/j.cep.2014.09.002.Suche in Google Scholar

35. Gao, T, Lin, W, Gu, A. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized. Energy Convers Manag 2011;52:2401–4. https://doi.org/10.1016/j.enconman.2010.12.040.Suche in Google Scholar

36. Dutta, A, Karimi, IA, Farooq, S. Heating value reduction of LNG (liquefied natural gas) by recovering heavy hydrocarbons: technoeconomic analyses using simulation-based optimization. Ind Eng Chem Res 2018;57:5924–32. https://doi.org/10.1021/acs.iecr.7b04311.Suche in Google Scholar

37. Ganta, H, Gunjal, OR, Agarwal, S, Dutta, A. Sustainability and technoeconomic assessment of polygeneration process for LNG cold recovery. Chem Eng Technol 2024. https://doi.org/10.1002/ceat.202400174. Published online.Suche in Google Scholar

38. Bao, J, Yuan, T, Zhang, L, Zhang, N, Zhang, X, He, G, et al.. Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel. Energy Convers Manag 2019;184:107–26. https://doi.org/10.1016/j.enconman.2019.01.040.Suche in Google Scholar

39. 2014 ASHRAE handbook: refrigeration. SI edition, American Society of Heating, Refrigerating and Air-Conditioning Engineers - Publication Index | NBS. 2014. [Accessed 12 January 2024]. https://www.thenbs.com/PublicationIndex/documents/details?Pub=ASHRAE&DocID=312130.Suche in Google Scholar

40. Parida, S, Roy, A, Anjankar, P. Design and experimental study of prototype cold storage for various vegetables stored. In: Techno-Societal 2018. Maharashtra, India: Springer International Publishing; 2020:447–55 pp.10.1007/978-3-030-16848-3_41Suche in Google Scholar

41. Kurtulus, K, Coskun, A, Ameen, S, Yilmaz, C, Bolatturk, A. Thermoeconomic analysis of a CO2 compression system using waste heat into the regenerative organic rankine cycle. Energy Convers Manag 2018;168:588–98. https://doi.org/10.1016/j.enconman.2018.05.037.Suche in Google Scholar

42. Shamsi, M, Mousavian, S, Rooeentan, S, Karami, B, Moghaddas, S, Afshardoost, A, et al.. Performance assessment of a geothermal- and LNG-driven zero-carbon multi-generation system for production of potable water, green hydrogen, and utilities. Therm Sci Eng Prog 2025;60. https://doi.org/10.1016/j.tsep.2025.103396.Suche in Google Scholar

43. Srilekha, M, Dutta, A. Simulation-based optimization framework for design of a self-sustainable LNG regasification process recovering waste cold energy. Therm Sci Eng Prog 2025;64:103821. https://doi.org/10.1016/j.tsep.2025.103821.Suche in Google Scholar

44. Luyben, WL. Estimating refrigeration costs at cryogenic temperatures. Comput Chem Eng 2017;103:144–50. https://doi.org/10.1016/j.compchemeng.2017.03.013.Suche in Google Scholar

45. Abdul Qyyum, M, Qadeer, K, Lee, M. Closed-loop self-cooling recuperative N2 expander cycle for the energy efficient and ecological natural gas liquefaction process. ACS Sustainable Chem Eng 2018;6:5021–33. https://doi.org/10.1021/acssuschemeng.7b04679.Suche in Google Scholar

46. Turton, R, Bailie, RC, Whiting, WB, Shaeiwitz, JA, Bhattacharyya, D. Analysis, synthesis, and design of chemical processes, 4th ed.; 2012. Published online.Suche in Google Scholar

47. Koffi, B, Cerutti, A, Kona, A, Janssens-Maenhout, G, Ianku, A. CoM default emission factors for the member states of the European Union-version 2017; 2017. Published online http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017 [Accessed 20 August 2024].Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/cppm-2025-0138).


Received: 2025-06-04
Accepted: 2025-10-11
Published Online: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2025-0138/pdf?lang=de
Button zum nach oben scrollen