Startseite Advances in composite and polymer flame retardants – a review on mechanism, properties and applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Advances in composite and polymer flame retardants – a review on mechanism, properties and applications

  • Challapalli Sruthi , Doddi Jai Niketan , Pydimalla Madhuri ORCID logo , BVS Praveen ORCID logo EMAIL logo , Raj Kumar Verma ORCID logo , Achuvelli Venkata Raghavendra Rao ORCID logo und Gowrishetty Srinivas ORCID logo
Veröffentlicht/Copyright: 22. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Flame retardants are critical additives that enhance the fire safety of polymers and composites by reducing flammability, delaying ignition, and inhibiting flame spread. They function through diverse mechanisms, including radical quenching in the gas phase, char formation in the condensed phase, endothermic heat absorption, gas dilution, and intumescence. Based on chemical composition and mode of action, flame retardants are broadly classified into organic and inorganic types, each with distinct thermal, environmental, and compatibility profiles. Synergistic systems, combining multiple additives such as phosphorus–nitrogen, boron–metal hydroxide, and nanomaterial-enhanced formulations, offer improved fire resistance at lower loadings, preserving mechanical and processing properties. Thermal and mechanical impacts are key considerations, as high additive concentrations may compromise structural performance, necessitating optimized formulations. Substrate type, processing requirements, target performance, and evolving environmental and regulatory constraints guide application-specific selection. In the construction, transportation, electronics, and textile sectors, flame retardants enable compliance with stringent safety standards while meeting durability, weight, and functional requirements. Emerging trends focus on halogen-free, bio-based, and nanotechnology-enabled systems that balance fire performance with sustainability and reduced toxicity. This review examines flame-retardant classifications, mechanisms, performance influences, and sector-specific applications, highlighting advances in sustainable materials and multifunctional systems.


Corresponding author: BVS Praveen, Department of Chemical Engineering, Chaitanya Bharathi Institute of Technology (CBIT), Hyderabad 500075, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ai, L, Chen, S, Zeng, J, Yang, L, Liu, P. Synergistic flame retardant effect of an intumescent flame retardant containing boron and magnesium hydroxide. ACS Omega 2019;4:3314–21. https://doi.org/10.1021/acsomega.8b03333.Suche in Google Scholar PubMed PubMed Central

2. Alongi, J, Ciobanu, M, Malucelli, G. Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 2012;87:2093–9. https://doi.org/10.1016/j.carbpol.2011.10.032.Suche in Google Scholar

3. Zhang, H, Xu, M, Li, B. Synthesis of a novel phosphorus-containing flame retardant curing agent and its application in epoxy resins. J Nanosci Nanotechnol 2016;16:2811–21. https://doi.org/10.1166/jnn.2016.11637.Suche in Google Scholar PubMed

4. Barczewski, M, Hejna, A, Sałasińska, K, Aniśko, J, Piasecki, A, Skórczewska, K, et al.. Thermomechanical and fire properties of polyethylene-composite-filled ammonium polyphosphate and inorganic fillers: an evaluation of their modification efficiency. Polymers 2022;14:2501. https://doi.org/10.3390/polym14122501.Suche in Google Scholar PubMed PubMed Central

5. Bourbigot, S. Flame retardancy of textiles: new approaches. Advances in fire retardant materials. Cambridge: Woodhead Publishing; 2008:9–40 pp.10.1533/9781845694701.1.9Suche in Google Scholar

6. Wang, Z, Wei, P, Qian, Y, Liu, J. The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B Eng 2014;60:341–9. https://doi.org/10.1016/j.compositesb.2013.12.033.Suche in Google Scholar

7. Bourbigot, S, Bras, ML, Leeuwendal, R, Shen, KK, Schubert, D. Recent advances in using zinc borates in flame retardancy of EVA. Polym Degrad Stab 1999;64:419–25. https://doi.org/10.1016/S0141-3910(98)00130-X.Suche in Google Scholar

8. Li, X, Zhang, H, Liu, X, Lv, Z, Jin, Y, Zhu, D, et al.. Synthesis of zinc oxide doped magnesium hydrate and its effect on the flame retardant and mechanical properties of polypropylene. Polymers 2023;15:4248. https://doi.org/10.3390/polym15214248.Suche in Google Scholar PubMed PubMed Central

9. Carosio, F, Laufer, G, Alongi, J, Camino, G, Grunlan, JC. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stabil 2011;96:745–50. https://doi.org/10.1016/j.polymdegradstab.2011.02.019.Suche in Google Scholar

10. Chen, D-Q, Wang, Y-Z, Hu, X-P, Wang, D-Y, Qu, M-H, Yang, B. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polym Degrad Stabil 2005;88:349–56. https://doi.org/10.1016/j.polymdegradstab.2004.11.010.Suche in Google Scholar

11. Chen, M, Tang, M, Qi, F, Chen, X, He, W. Microencapsulated ammonium polyphosphate and its application in the flame-retardant polypropylene composites. J Fire Sci 2015;33:374–89. https://doi.org/10.1177/0734904115598163.Suche in Google Scholar

12. Chen, X, Hu, Y, Jiao, C, Song, L. Preparation and thermal properties of a novel flame-retardant coating. Polym Degrad Stabil 2007;92:1141–50. https://doi.org/10.1016/j.polymdegradstab.2007.01.031.Suche in Google Scholar

13. Córdova-Suárez, M, Barreno-Avila, EM, Pozo-Álvarez, DS, Córdova-Suárez, JC. Inorganic flame retardants’ efficacy of aluminum hydroxide, magnesium hydroxide in the combustion rate of intermediate Calamagrostis from Ecuador’ Moorlands. IOP Conf Ser Mater Sci Eng 2021;1173:012070. https://doi.org/10.1088/1757-899X/1173/1/012070.Suche in Google Scholar

14. Du, B, Fang, Z. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym Degrad Stabil 2011;96:1725–31. https://doi.org/10.1016/j.polymdegradstab.2011.08.002.Suche in Google Scholar

15. Zhang, T, Xie, H, Xie, S, Hu, A, Liu, J, Kang, J, et al.. A superior two-dimensional phosphorus flame retardant: few-layer black phosphorus. Molecules 2023;28:5062. https://doi.org/10.3390/molecules28135062.Suche in Google Scholar PubMed PubMed Central

16. Vahabi, H, Kandola, B, Saeb, M. Flame retardancy index for thermoplastic composites. Polymers 2019;11:407. https://doi.org/10.3390/polym11030407.Suche in Google Scholar PubMed PubMed Central

17. Laoutid, F. Advanced flame retardant materials. Erscheinungsort nicht ermittelbar. Switzerland: MDPI – Multidisciplinary Digital Publishing Institute; 2020.Suche in Google Scholar

18. Song, L, Hu, Y, Tang, Y, Zhang, R, Chen, Z, Fan, W. Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polym Degrad Stabil 2005;87:111–6. https://doi.org/10.1016/j.polymdegradstab.2004.07.012.Suche in Google Scholar

19. Fredi, G, Dorigato, A, Fambri, L, Lopez-Cuesta, J-M, Pegoretti, A. Synergistic effects of metal hydroxides and fumed nanosilica as fire retardants for polyethylene. Flame Retardancy Therm Stabil Mater 2019;2:30–48. https://doi.org/10.1515/flret-2019-0004.Suche in Google Scholar

20. Hasan, KMF, Horváth, PG, Kóczán, Z, Bak, M, Bejó, L, Alpár, T. Flame-retardant hybrid composite manufacturing through reinforcing lignocellulosic and carbon fibers reinforced with epoxy resin (F@LC). Cellulose 2023;30:4337–52. https://doi.org/10.1007/s10570-023-05159-y.Suche in Google Scholar

21. Khan, L, Kim, JS, Huh, S-H, Koo, BH. N-containing hybrid composites coatings for enhanced fire-retardant properties of cotton fabric using one-pot sol–gel process. Polymers 2023;15:258. https://doi.org/10.3390/polym15020258.Suche in Google Scholar PubMed PubMed Central

22. Wang, Z, Han, E, Ke, W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog Org Coating 2005;53:29–37. https://doi.org/10.1016/j.porgcoat.2005.01.004.Suche in Google Scholar

23. Gu, J, Zhang, G, Dong, S, Zhang, Q, Kong, J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coating Technol 2007;201:7835–41. https://doi.org/10.1016/j.surfcoat.2007.03.020.Suche in Google Scholar

24. Guo, X, Wang, H, Ma, D, He, J, Lei, Z. Synthesis of a novel, multifunctional inorganic curing agent and its effect on the flame‐retardant and mechanical properties of intrinsically flame retardant epoxy resin. J Appl Polym Sci 2018;135:46410. https://doi.org/10.1002/app.46410.Suche in Google Scholar

25. Hyung, YE, Vissers, DR, Amine, K. Flame-retardant additives for lithium-ion batteries. J Power Sources 2003;119–121:383–7. https://doi.org/10.1016/S0378-7753(03)00225-8.Suche in Google Scholar

26. Innes, A, Innes, J. Flame retardants. Applied plastics engineering handbook. Amsterdam, Boston: Elsevier; 2011:469–85 pp.10.1016/B978-1-4377-3514-7.10027-3Suche in Google Scholar

27. Tao, Y, Liu, C, Li, P, Wang, B, Xu, Y-J, Jiang, Z-M, et al.. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism. Prog Org Coating 2021;150:105971. https://doi.org/10.1016/j.porgcoat.2020.105971.Suche in Google Scholar

28. Kandola, BK, Biswas, B, Price, D, Horrocks, AR. Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin. Polym Degrad Stabil 2010;95:144–52. https://doi.org/10.1016/j.polymdegradstab.2009.11.040.Suche in Google Scholar

29. Kashiwagi, T, Harris, RH, Zhang, X, Briber, RM, Cipriano, BH, Raghavan, SR, et al.. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 2004;45:881–91. https://doi.org/10.1016/j.polymer.2003.11.036.Suche in Google Scholar

30. Wang, D, Liu, Q, Peng, X, Liu, C, Li, Z, Li, Z, et al.. High-efficiency phosphorus/nitrogen-containing flame retardant on epoxy resin. Polym Degrad Stabil 2021;187:109544. https://doi.org/10.1016/j.polymdegradstab.2021.109544.Suche in Google Scholar

31. Kicko-Walczak, E, Rymarz, G. Recent developments in fire-retardant thermoset resins using inorganic-organic hybrid flame retardants. J Polym Eng 2018;38:563–71. https://doi.org/10.1515/polyeng-2017-0224.Suche in Google Scholar

32. Liu, D, Ji, P, Zhang, T, Lv, J, Cui, Y. A bi-DOPO type of flame retardancy epoxy prepolymer: synthesis, properties and flame-retardant mechanism. Polym Degrad Stabil 2021;190:109629. https://doi.org/10.1016/j.polymdegradstab.2021.109629.Suche in Google Scholar

33. Liu, H, Zhang, Z, Wang, Z, Sun, J, Wei, Y, Zhang, D. Preparation and properties of flame-retardant asphalt containing polyurethane and eco-friendly flame retardants. Constr Build Mater 2023;375:130996. https://doi.org/10.1016/j.conbuildmat.2023.130996.Suche in Google Scholar

34. Meyer, J, Bester, K. Organophosphate flame retardants and plasticisers in wastewater treatment plants. J Environ Monit 2004;6:599. https://doi.org/10.1039/b403206c.Suche in Google Scholar PubMed

35. Sarker, F, Potluri, P, Afroj, S, Koncherry, V, Novoselov, KS, Karim, N. Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Appl Mater Interfaces 2019;11:21166–76. https://doi.org/10.1021/acsami.9b04696.Suche in Google Scholar PubMed PubMed Central

36. Yang, S, Wang, J, Huo, S, Cheng, L, Wang, M. Preparation and flame retardancy of an intumescent flame-retardant epoxy resin system constructed by multiple flame-retardant compositions containing phosphorus and nitrogen heterocycle. Polym Degrad Stabil 2015;119:251–9. https://doi.org/10.1016/j.polymdegradstab.2015.05.019.Suche in Google Scholar

37. Kim, E-S, Kim, YC, Park, J, Kim, Y, Kim, S-H, Kim, KJ, et al.. Mechanical properties and flame retardancy of surface modified magnesium oxysulfate (5Mg(OH)2·MgSO4·3H2O) whisker for polypropylene composites. Journal of Materiomics 2018;4:149–56. https://doi.org/10.1016/j.jmat.2018.02.003.Suche in Google Scholar

38. Qian, X, Song, L, Bihe, Y, Yu, B, Shi, Y, Hu, Y, et al.. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater Chem Phys 2014;143:1243–52. https://doi.org/10.1016/j.matchemphys.2013.11.029.Suche in Google Scholar

39. Wu, WH, Wu, HJ, Liu, WH, Wang, YE, Liu, N, Yang, XM, et al.. Two series of inorganic melamine salts as flame retardants and smoke suppressants for flexible PVC. Polym Compos 2018;39:529–36. https://doi.org/10.1002/pc.23965.Suche in Google Scholar

40. Lee, SH, Lee, SG, Lee, JS, Ma, BC. Understanding the flame retardant mechanism of intumescent flame retardant on improving the fire safety of rigid polyurethane foam. Polymers 2022;14:4904. https://doi.org/10.3390/polym14224904.Suche in Google Scholar PubMed PubMed Central

41. Jiao, L-L, Zhao, P-C, Liu, Z-Q, Wu, Q-S, Yan, D-Q, Li, Y-L, et al.. Preparation of magnesium hydroxide flame retardant from hydromagnesite and enhance the flame retardant performance of EVA. Polymers 2022;14:1567. https://doi.org/10.3390/polym14081567.Suche in Google Scholar PubMed PubMed Central

42. Zhang, T, Liu, W, Wang, M, Liu, P, Pan, Y, Liu, D. Synergistic effect of an aromatic boronic acid derivative and magnesium hydroxide on the flame retardancy of epoxy resin. Polym Degrad Stabil 2016;130:257–63. https://doi.org/10.1016/j.polymdegradstab.2016.06.011.Suche in Google Scholar

43. Schäfer, A, Seibold, S, Lohstroh, W, Walter, O, Döring, M. Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. J Appl Polym Sci 2007;105:685–96. https://doi.org/10.1002/app.26073.Suche in Google Scholar

44. Xu, Z, Chu, Z, Yan, L. Enhancing the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings by introducing boric acid as synergistic agent. J Therm Anal Calorim 2018;133:1241–52. https://doi.org/10.1007/s10973-018-7201-3.Suche in Google Scholar

45. Yu, H, Xia, Y, Xu, X, Zarshad, N, Wu, M, Ni, H. Preparation of organic–inorganic intumescent flame retardant with phosphorus, nitrogen and silicon and its flame retardant effect for epoxy resin. J Appl Polym Sci 2020;137:49256. https://doi.org/10.1002/app.49256.Suche in Google Scholar

46. Suppakarn, N, Jarukumjorn, K. Mechanical properties and flammability of sisal/PP composites: effect of flame retardant type and content. Compos B Eng 2009;40:613–8. https://doi.org/10.1016/j.compositesb.2009.04.005.Suche in Google Scholar

47. Shi, Y, Wang, G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl Surf Sci 2016;385:453–63. https://doi.org/10.1016/j.apsusc.2016.05.107.Suche in Google Scholar

48. Yu, B, Shi, Y, Yuan, B, Qiu, S, Xing, W, Hu, W, et al.. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 2015;3:8034–44. https://doi.org/10.1039/C4TA06613H.Suche in Google Scholar

49. Zheng, T, Wang, W, Liu, Y. A novel phosphorus-nitrogen flame retardant for improving the flame retardancy of polyamide 6: preparation, properties, and flame retardancy mechanism. Polymers for Advanced Techs 2021;32:2508–16. https://doi.org/10.1002/pat.5281.Suche in Google Scholar

50. Tai, CM, Li, RKY. Mechanical properties of flame retardant filled polypropylene composites. J Appl Polym Sci 2001;80:2718–28. https://doi.org/10.1002/app.1386.Suche in Google Scholar

51. Song, P, Xu, L, Guo, Z, Zhang, Y, Fang, Z. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 2008;18:5083. https://doi.org/10.1039/b808309f.Suche in Google Scholar

52. Wang, Z, Han, E, Ke, W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf Coating Technol 2006;200:5706–16. https://doi.org/10.1016/j.surfcoat.2005.08.102.Suche in Google Scholar

Received: 2025-03-01
Accepted: 2025-10-07
Published Online: 2025-10-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2025-0044/html?lang=de
Button zum nach oben scrollen