Home Use of membrane distillation for selective recovery of chemicals like ethyl alcohol: a critical review
Article
Licensed
Unlicensed Requires Authentication

Use of membrane distillation for selective recovery of chemicals like ethyl alcohol: a critical review

  • Yogesh S. Mahajan ORCID logo EMAIL logo and Harshada R. Jadhav ORCID logo
Published/Copyright: July 17, 2025
Become an author with De Gruyter Brill

Abstract

Separation, purification and recovery of chemicals has become an essential attribute of process industries. Process intensifications (PI) like reactive separations (RS), membrane reactors (MR) and advanced membrane separation techniques can be effectively used for this purpose. Membrane distillation (MD) has been used in applications like desalination of sea water, brackish water treatment and brine treatment. MD can also be used for recovery of volatile, nonvolatile chemicals with greater effectiveness and better economics. This review critically adjudges the application of MD for recovery of chemicals especially ethyl alcohol (ethanol, EtOH). Technical aspects like membrane configurations, membrane materials, comparison with other membrane separations, economic aspects and industrial applications are some of the key features of this review. Interplay of parameters and membrane performance is discussed. Challenges like long term sustainability, membrane fouling, scale up, hybrid processes are reviewed in considerable detail. Directions for further research are indicated.


Corresponding author: Yogesh S. Mahajan, Chemical Engineering, Dr. Babasaheb Ambedkar Technological University, Raigad, Maharashtra, India, E-mail:

  1. Research ethics: The research ethics have been followed to the best of our knowledge.

  2. Informed consent: Not needed.

  3. Author contributions: Both the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not used.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: Nil.

  7. Data availability: All data is made available through the submission itself.

Nomenclature

MD:

Membrane distillation

MBS:

Membrane based separations

MR:

Membrane reactor

RS:

Reactive separation

MSP:

Membrane separation process

PV:

Pervaporation

RD:

Reactive distillation

DCMD:

Direct contact membrane distillation

AGMD:

Air gap membrane distillation

SGMD:

Sweeping gas membrane distillation

VMD:

Vacuum membrane distillation

RO:

Reverse osmosis

EtOH:

Ethanol

PTFE:

Polytetrafluoroethylene

PP:

Polypropylene

PVDF:

Polyvinylidene fluoride

PI:

Process intensification

MinSP:

Minimum selling price

IRR:

Internal rate return

ROI:

Rate of interest

NPV:

Net present value

MED:

Multieffect distillation

HIDiC:

Heat integrated distillation column

TAFFD:

Thermosyphon assisted falling film distillation

PTMSP:

Poly [(1-trimethylsilyl)-l-propyne]

POMS:

Poly (octylmethyl siloxane)

PDMS:

Poly (dimethylsiloxane)

FS:

Flat sheet

HF:

Hollow fiber

GO:

Graphene oxide

PES:

Polyethersulfone

PS:

Polysulfone

LEP:

Liquid entry pressure

HS:

Hybrid separations

PSD:

Pore size distribution

MD-RED:

MD – reverse electrodialysis

MD-PRO:

MD – pressure retarded osmosis

MD-FO:

MD – forward osmosis

rGO:

Reduced graphene oxide

CNT:

Carbon nano tubes

GNP:

Graphene nano - plate

FO:

Forward osmosis

VP:

Vapor permeation

VLE:

Vapor Liquid equilibrium

ED:

Electrodialysis

LLE:

Liquid-liquid-extraction

PSA:

Pressure swing adsorption

MTBE:

Methyl tertiary butyl ether

References

1. Kumakiri, I, Yokota, M, Tanaka, R, Shimada, Y, Kiatkittipong, W, Lim, JW, et al.. Process intensification in bio-ethanol production–recent developments in membrane separation. Processes 2021;9:1028. https://doi.org/10.3390/pr9061028.Search in Google Scholar

2. Kiss, AA, Olga, M, Readi, K. An industrial perspective on membrane distillation processes. J Chem Technol Biotechnol 2018;93:2047–55.10.1002/jctb.5674Search in Google Scholar

3. Dinh, LM, Jacob, P, Chettiyapan, V. Direct contact and sweeping gas membrane distillation for process intensification – a comparative study. Desalination Water Treat 2017;89:53–64. https://doi.org/10.5004/dwt.2017.21371.Search in Google Scholar

4. Kargari, A, Yousefi, A. Process intensification through magnetic treatment of seawater for production of drinking water by membrane distillation process: a novel approach for commercialization membrane distillation process. Chem Eng Process Process Intensif 2021;167. https://doi.org/10.1016/j.cep.2021.108543.Search in Google Scholar

5. Zare, S, Kargari, A. Process intensification in the direct contact membrane distillation (DCMD) desalination by patterning membrane surface: a CFD study. Chem Eng Process Process Intensif 2024;205. https://doi.org/10.1016/j.cep.2024.110027.Search in Google Scholar

6. Li, B, Li, Z, Mai, Z, Xiang, S, Hu, M, Li, C, et al.. Bioinspired hierarchical structure with intensified anti-scaling capacity for real seawater membrane distillation. Desalination 2025;601. https://doi.org/10.1016/j.desal.2025.118539.Guan PZKSearch in Google Scholar

7. Baharudin, L, Indera, AA, Watson, MJ, Yip, A. Process intensification in multifunctional reactors: a review of multi-functionality by catalytic structures, internals, operating modes, and unit integrations. Chem Eng Process Process Intensif 2021;168. https://doi.org/10.1016/j.cep.2021.108561.Search in Google Scholar

8. Dalanta, F, Handoko, DT, Hadiyanto, H, Kusworo, TD. Recent implementations of process intensification strategy in membrane-based technology: a review. Chem Eng Res Des 2024;202:74–91. https://doi.org/10.1016/j.cherd.2023.12.014.Search in Google Scholar

9. Samadi, A, Ni, T, Fontananova, E, Tang, G, Shon, H, Zhao, S. Engineering antiwetting hydrophobic surfaces for membrane distillation: a review. Desalination 2023;563:21. https://doi.org/10.1016/j.desal.2023.116722.Search in Google Scholar

10. Muhamad, NAS, Mokhtar, NM, Naim, R, Lau, WJ, Ismail, AF. A review of membrane distillation process – before, during and after testing. Int J Eng Tech Sci 2019;6:1.10.15282/ijets.v6i1.1549Search in Google Scholar

11. Efrem, C, Enrico, D. Membrane distillation and related operations – a review. Separ Purif Rev 2005;34:35–86. https://doi.org/10.1081/spm-200054951.Search in Google Scholar

12. Ali, A, Shirazi, MMA, Nthunya, L, Castro-Munoz, R, Norafiqah, I, Tavajohi, N, et al.. Progress in module design for membrane distillation. Desalination 2024;581. https://doi.org/10.1016/j.desal.2024.117584.Search in Google Scholar

13. Panayotova, M, Panayotov, V. Application of membrane processes in mining and mineral processing. Web Conf 2021;280:08016. https://doi.org/10.1051/e3sconf/202128008016.Search in Google Scholar

14. Ngo, T-T-M, Nguyen, T-D-N, Nguyen, H-H, Hoang, T-K-D, Bui, X-T. Review on membrane module configurations used for membrane distillation process. Geosci Eng 2019;1:1–10.,Search in Google Scholar

15. Vane, LM. Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. J Chem Technol Biotechnol 2019;94:343–65. https://doi.org/10.1002/jctb.5839.Search in Google Scholar PubMed PubMed Central

16. Jeganes, R, Matsuura, T, Bilad, MR, El-badawya, TH, Aziza, F, Ismaila, AF, et al.. Polymeric membranes for desalination using membrane distillation: a review. Desalination 2020;490:114530. https://doi.org/10.1016/j.desal.2020.114530.Dzarfan, OMHSearch in Google Scholar

17. Khalid, A, Aslam, M, Qyyum, MA, Faisal, A, Khan, AL, Ahmed, F, et al.. Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew Sustain Energy Rev 2019;105:427–43. https://doi.org/10.1016/j.rser.2019.02.002.Search in Google Scholar

18. Cipollina, A, Sparti, MGD, Tamburini, A, Micale, G. Development of a membrane distillation module for solar energy seawater desalination. Chem Eng Res Des 2012;90:2101–21. https://doi.org/10.1016/j.cherd.2012.05.021.Search in Google Scholar

19. Lijo, F, Farah, EA, Hilal, N. Review advances in membrane distillation module configuration. Membrane 2022;12:81.10.3390/membranes12010081Search in Google Scholar PubMed PubMed Central

20. Cassano, A, Conidi, C, Drioli, E. A comprehensive review of membrane distillation and osmotic distillation in agro-food applications. J Mem Sci Res 2020;6:304–18.Search in Google Scholar

21. Curcio, E, Drioli, E. Membrane distillation and related operations – a review. Separ Purif Rev 2013;34:35–86. https://doi.org/10.1081/spm-200054951.Search in Google Scholar

22. Tijing, LD, Choi, J-S, Lee, S, Kim, S-H, Shon, HK. Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 2014;453:435–62. https://doi.org/10.1016/j.memsci.2013.11.022.Search in Google Scholar

23. Alessandro, F, Macedonio, F, Drioli, E. Review new materials and phenomena in membrane distillation. Chemistry 2023;5:65–84. https://doi.org/10.3390/chemistry5010006.Search in Google Scholar

24. Parani, S, Oluwafemi, OS. Review membrane distillation: recent configurations, membrane surface engineering, and applications. Membranes 2021;11:934. https://doi.org/10.3390/membranes11120934.Search in Google Scholar PubMed PubMed Central

25. Afsari, M, Shon, HK, Tijing, LD. Janus membranes for membrane distillation: recent advances and challenges. Adv Colloid Interface Sci 2021;289. https://doi.org/10.1016/j.cis.2021.102362.Search in Google Scholar PubMed

26. Qasim, M, Samad, IU, Darwish, NA, Hilal, N. Comprehensive review of membrane design and synthesis for membrane distillation. Desalination 2021;518. https://doi.org/10.1016/j.desal.2021.115168.Search in Google Scholar

27. Nassif, AG, Ibrahim, SS, Majdi, HS, Alsalhy, QF. Ethanol separation from an ethanol–water solution using vacuum membrane distillation. Membranes 2022;12:807. https://doi.org/10.3390/membranes12080807.Search in Google Scholar PubMed PubMed Central

28. Li, J, Zhou, W, Fan, S, Xiao, Z, Liu, Y, Liu, J, et al.. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane. Bioresour Technol 2018;268:708–14. https://doi.org/10.1016/j.biortech.2018.08.055.Search in Google Scholar PubMed

29. Nova, CJM, Nunez, FWB, Espriella, RJC-DL. Operating conditions influence on VMD and SGMD for ethanol recovery from aqueous solutions. J. Oil, Gas Alternative Energy Sources 2015;6:69–80. https://doi.org/10.29047/01225383.21.Search in Google Scholar

30. Lewandowicz, G, Białas, W, Marczewski, B, Szymanowska, D. Application of membrane distillation for ethanol recovery during fuel ethanol production. J Membr Sci 2011;375:212–9. https://doi.org/10.1016/j.memsci.2011.03.045.Search in Google Scholar

31. Izquierdo-Gill, MA, Jonsson, G. Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). J Membr Sci 2003;214:113–30. https://doi.org/10.1016/s0376-7388(02)00540-9.Search in Google Scholar

32. Shahua, VT, Thombre, SB. Air gap membrane distillation: a review. J Renew Sustain Energy 2019;11:4. https://doi.org/10.1063/1.5063766.Search in Google Scholar

33. Sanap, PP, Mahajan, YS. Ethyl alcohol-water separation by extractive distillation: simulation using aspen plus™ and experimental validation. Chem Technol 2024;67:86–93.10.6060/ivkkt.20246703.6914Search in Google Scholar

34. Sanap, PP, Mahajan, YS. Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. Rev Chem Eng 2023;39:297–328. https://doi.org/10.1515/revce-2020-0114.Search in Google Scholar

35. Sanap, PP, Diwan, A, Mahajan, YS. A critical overview of the use of biodiesel as an alternative fuel: techno-economic perspective. International conference on emerging trends in engineering yukthi; 2023. p. 168–77.10.2139/ssrn.4552154Search in Google Scholar

36. Patrick, L, Balannec, B, Fouchard-Le, GL, Sayed, W, Cabrol, AW, Hayet, D, et al.. Air-gap membrane distillation for the separation of bioethanol from algal-based fermentation broth. Sep Purif Technol 2019;213:255–63. https://doi.org/10.1016/j.seppur.2018.12.047.Search in Google Scholar

37. Panupong, C, Santi, K, Thanyalak, C, Sujitra, W. Review on membranes for ethanol-water separation. Silpakorn Univ Sci Technol J 2016;10:201.Search in Google Scholar

38. Fuqiang, J, Dongliang, H, Haipeng, X, Xiaodong, Z, Yan, L, Hui, M, et al.. Ethanol recovery from a model broth by the fermentation-extraction distillation coupling process. Chem Eng Process Process Intensif 2019;145:107669. https://doi.org/10.1016/j.cep.2019.107669.Search in Google Scholar

39. Bernardo, AC, Denise, MGF, Frederico, AK. Membrane distillation and pervaporation for ethanol removal: are we comparing in the right way. Separ Sci Technol 2018;54:110–27. https://doi.org/10.1080/01496395.2018.1498518.Search in Google Scholar

40. Li, G, Bai, P. New operation strategy for separation of ethanol−water by extractive distillation. Ind Eng Chem Res 2012;51:2723–9. https://doi.org/10.1021/ie2026579.Search in Google Scholar

41. Nomura, M, Bin, T, Nakao, S. Selective ethanol extraction from fermentation broth using a silicalite membrane. Sep Purif Technol 2002;27:59–66. https://doi.org/10.1016/s1383-5866(01)00195-2.Search in Google Scholar

42. Burnwal, PK, Pal, MMO, Chaurasia, SP. Synthesis of hybrid PVDF–PTFE membrane using nonhazardous solvent for ethanol - water separation through membrane distillation. J Hazard Toxic Radioact Waste 2022;26:1–11. https://doi.org/10.1061/(asce)hz.2153-5515.0000710.Search in Google Scholar

43. Kumar, R, Ghosh, AK, Pal, P. Fermentative ethanol production from Madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Convers Manag 2019;181:593–607. https://doi.org/10.1016/j.enconman.2018.12.050.Search in Google Scholar

44. Gupta, O, Roy, S, Mitra, S. Microwave induced membrane distillation for enhanced ethanol−water separation on a carbon nanotube immobilized membrane. Ind Eng Chem Res 2019;58:18313–9. https://doi.org/10.1021/acs.iecr.9b02376.Search in Google Scholar

45. Shirazi, MMA, Ali, K, Tabatabaei, M. Sweeping gas membrane distillation (SGMD) as an alternative for integration of bioethanol processing: study on a commercial membrane and operating parameters. Chem Eng Commun 2013;202:457–66.10.1080/00986445.2013.848805Search in Google Scholar

46. Bandini, S, Gostoh, C, Sarti, GC. Separation efficiency in vacuum membrane distillation. J Membr Sci 1992;73:217–29. https://doi.org/10.1016/0376-7388(92)80131-3.Search in Google Scholar

47. Shi, J-Y, Zhao, Z-P, Zhu, C-Y. Studies on simulation and experiments of ethanol-water mixture separation by VMD using a PTFE flat membrane module. Sep Purif Technol 2013;123:53–63. https://doi.org/10.1016/j.seppur.2013.12.015.Search in Google Scholar

48. Tomaszewska, M, Bialonczyk, L. Ethanol production from whey in a bioreactor coupled with direct contact membrane distillation. Catal Today 2016;268:156–63. https://doi.org/10.1016/j.cattod.2016.01.059.Search in Google Scholar

49. Tomaszewska, M, Bialonczyk, L. Production of ethanol from lactose in a bioreactor integrated with membrane distillation. Desalination 2013;323:114–9. https://doi.org/10.1016/j.desal.2013.01.026.Search in Google Scholar

50. Gryta, M. The fermentation process integrated with membrane distillation. Sep Purif Technol 2001;24:283–96. https://doi.org/10.1016/s1383-5866(01)00132-0.Search in Google Scholar

51. Jafari, A, Kebria, MRS, Rahimpour, A, Bakeri, G. Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air gap membrane distillation. Chem Eng Process Process Intensif 2018;126:222–31. https://doi.org/10.1016/j.cep.2018.03.010.Search in Google Scholar

52. Banat, FA, Simandl, J. Membrane distillation for dilute ethanol separation from aqueous streams. J Membr Sci 1999;163:333–48. https://doi.org/10.1016/s0376-7388(99)00178-7.Search in Google Scholar

53. Bhoumick, MC, Paul, S, Roy, S, Harvey, BG, Mitra, S. Recovery of isoamyl alcohol by graphene oxide immobilized membrane and air-sparged membrane distillation. Membranes 2024;14:49. https://doi.org/10.3390/membranes14020049.Search in Google Scholar PubMed PubMed Central

54. Carrio, JAG, Talluri, P, Toolahalli, ST, Echeverrigaray, SG, Neto, AHC. Gas stripping assisted vapor permeation using graphene membrane on silicon carbide for ethanol recovery. Sci Rep 2023;13:9781. https://doi.org/10.1038/s41598-023-37080-6.Search in Google Scholar PubMed PubMed Central

55. Intrchom, W, Roy, S, Mitra, S. Removal and recovery of methyl tertiary butyl ether (MTBE) from water using carbon nanotube and graphene oxide immobilized membranes. Nanomaterials 2020;10:578. https://doi.org/10.3390/nano10030578.Search in Google Scholar PubMed PubMed Central

56. Shin, Y, Taufique, MFN, Devanathan, R, Cutsforth, EC, Lee, J, Liu, W, et al.. Highly selective supported graphene oxide membranes for water-ethanol separation. Sci Rep 2019;9:2251. https://doi.org/10.1038/s41598-019-38485-y.Search in Google Scholar PubMed PubMed Central

57. Intrchom, W, Roy, S, Humoud, MS, Mitra, S. Immobilization of graphene oxide on the permeate side of a membrane distillation membrane to enhance flux. Membranes 2018;8:63. https://doi.org/10.3390/membranes8030063.Search in Google Scholar PubMed PubMed Central

58. Li, J, Zhou, W, Fan, S, Xiao, Z, Liu, Y, Liu, Y, et al.. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane. Bioresour Technol 2018;268:708–14. https://doi.org/10.1016/j.biortech.2018.08.055.Search in Google Scholar PubMed

59. Ali, K, Ismile, M, Ali, H. Case report energy and cost analysis of a multiple channel direct contact membrane distillation module: case study. Case Stud Chem Environ Eng 2023;8:10044.10.1016/j.cscee.2023.100449Search in Google Scholar

60. Hanen, A, Fatma, K, Hiba, A, Khaoula, H, Bechir, C, Qusay, A. Novel composite membrane based on recycled low-density polyethylene-alumina used for vacuum membrane distillation. Bull Natl Res Cent 2023;47:132. https://doi.org/10.1186/s42269-023-01103-z.Search in Google Scholar

61. Leaper, S, Abdel-Karim, A, Gorgojo, P. The use of carbon nanomaterials in membrane distillation membranes: a review. Front Chem Sci Eng 2021;15:755–74. https://doi.org/10.1007/s11705-020-1993-y.Search in Google Scholar

62. Vatanpour, V, Madaeni, SS, Khataee, AR, Salehi, E, Sirus, Z, Hossein, AMX. TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 2012;292:19–29. https://doi.org/10.1016/j.desal.2012.02.006.Search in Google Scholar

63. Abdallah, H, Moustafa, AF, AlAnezi, AAH, El-Sayed, HEM. Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 2014;346:30–6. https://doi.org/10.1016/j.desal.2014.05.003.Search in Google Scholar

64. Rastegarpanah, A, Mortaheb, HR. Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination 2016;377:99–107. https://doi.org/10.1016/j.desal.2015.09.008.Search in Google Scholar

65. Bhadra, M, Roy, S, Mitra, S. Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 2016;378:37–43. https://doi.org/10.1016/j.desal.2015.09.026.Search in Google Scholar

66. Leaper, S, Abdel-Karim, A, Faki, B, Luque-Alled, JM, Alberto, M, Vijayaraghavan, A, et al.. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-Functionalized graphene oxide for membrane distillation. J Membr Sci 2018;554:309–23. https://doi.org/10.1016/j.memsci.2018.03.013.Search in Google Scholar

67. Kanchanalai, P, Lively, RP, Realff, MJ, Kawajiri, Y. Cost and energy savings using an optimal design of reverse osmosis membrane pretreatment for dilute bioethanol purification. Ind Eng Chem Res 2013;52:11132–41. https://doi.org/10.1021/ie302952p.Search in Google Scholar

68. Peng, P, Shi, B, Lan, Y. A review of membrane materials for ethanol recovery by pervaporation. Separ Sci Technol 2011;46:234–46. https://doi.org/10.1080/01496395.2010.504681.Search in Google Scholar

69. Bolto, B, Hoang, M, Xie, Z. A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Process Process Intensif 2011;50:227–35. https://doi.org/10.1016/j.cep.2011.01.003.Search in Google Scholar

70. Zheng, P, Li, C, Wang, N, Li, J, Quanfu, A. Review the potential of pervaporation for biofuel recovery from fermentation: an energy consumption point of view. Chin J Chem Eng 2019;27:1296–306. https://doi.org/10.1016/j.cjche.2018.09.025.Search in Google Scholar

71. Miyata, H, Yahagi, S, Fukunaga, A, Suzuki, Y, Ishiodori, A, Kawabe, S. PTFE hollow fiber membrane designed for membrane distillation. Sumitomo Electric Technical Review; 2023.Search in Google Scholar

72. Zhao, H, Yang, J, Li, Z, Geng, Y, Li, J, Chen, M, et al.. Potential application of graphene oxide membranes in high-level liquid waste treatment. J Clean Prod 2020;266. https://doi.org/10.1016/j.jclepro.2020.121884.Search in Google Scholar

73. Jiang, Y, Biswas, P, Fortner, JD. A review of recent developments in graphene enabled membranes for water treatment. Environ Sci Wat Res Tech 2016;2:915–22. https://doi.org/10.1039/c6ew00187d.Search in Google Scholar

74. Hubadillah, SK, Tai, ZS, Othman, M, Harun, Z, Jamalludin, MR, Rahman, M, et al.. Hydrophobic ceramic membrane for membrane distillation: a mini review on preparation, characterization, and applications. Sep Purif Technol 2019;217:71–84. https://doi.org/10.1016/j.seppur.2019.02.014.Search in Google Scholar

75. Tai, ZH, Haiqal, M, Aziz, A, Othman, MHD, Dzahir, M, Hashim, NA, et al.. Ceramic membrane distillation for desalination. Separ Purif Rev 2020;49:317–56. https://doi.org/10.1080/15422119.2019.1610975.Search in Google Scholar

76. Chuntanalerg, P, Kulprathipanja, S, Chaisuwan, T, Wongkasemjit, S. Review on membranes for ethanol-water separation. Sci Eng Health Stud 2016;10:61–73.Search in Google Scholar

77. Hubadillah, SK, Iwamoto, Y, Jamalludin, MR, Othman, MHD. Recent progress on low-cost ceramic membrane for water and wastewater treatment. Ceram Int 2022;48:24157–91. https://doi.org/10.1016/j.ceramint.2022.05.255.Search in Google Scholar

78. Zhang, W, Wu, M, Yu, D, Wang, D. Preparation and properties of methyl trichloro silane grafted modified ceramic membranes for membrane distillation. J Environ Chem Eng 2025;13. https://doi.org/10.1016/j.jece.2025.115405.Search in Google Scholar

79. Chen, X, Ping, Z, Long, Y. The separation properties of alcohol–water mixture through silicalite-I-filled silicone rubber membranes by pervaporation. J Appl Polym Sci 1998;67:629–36. https://doi.org/10.1002/(sici)1097-4628(19980124)67:4<629::aid-app5>3.0.co;2-s.10.1002/(SICI)1097-4628(19980124)67:4<629::AID-APP5>3.0.CO;2-4Search in Google Scholar

80. Yan, X, Cheng, S, Ma, C, Li, J, Wang, G, Yang, C. D-spacing controllable GO membrane intercalated by sodium tetraborate pentahydrate for dye contamination wastewater treatment. J Hazard Mater 2022;422:126939. https://doi.org/10.1016/j.jhazmat.2021.126939.Search in Google Scholar

81. Alberto, M, Skuse, C, Tamaddondar, M, Gorgojo, P. Immobilized graphene oxide-based membranes for improved pore wetting resistance in membrane distillation. Desalination 2022;537. https://doi.org/10.1016/j.desal.2022.115898.Search in Google Scholar

82. Gkika, DA, Karmali, V, Lambropoulou, DA, Mitropoulos, AC, Kyzas, GZ. Membranes coated with graphene-based materials: a review. Membranes 2023;13:127. https://doi.org/10.3390/membranes13020127.Search in Google Scholar

83. Fuzil, NS, Othman, NH, Alias, NH, Shayuti, M, Shahruddin, MZ, Marpani, F, et al.. An overview on the use of graphene-based membranes for membrane distillation. Desalin Water Treat 2022;257:243–59. https://doi.org/10.5004/dwt.2022.28460.Search in Google Scholar

84. Kang, J, Kwon, O, Kim, JP, Kim, JY, Kim, J, Cho, Y, et al.. Graphene membrane for water-related environmental application: a comprehensive review and perspectives. ACS Environ Au 2024;16:35–60. https://doi.org/10.1021/acsenvironau.4c00088.Search in Google Scholar

85. Nene, S, Patil, G, Raghavarao, KSMS. Membrane distillation in food processing. In: Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications; 2008:513–51 pp.10.1201/9781420009484.ch19Search in Google Scholar

86. Hussain, A, Janson, A, Matar, JM, Adham, S. Membrane distillation: recent technological developments and advancements in membrane materials. Emergent Mater 2021;5:347–67. https://doi.org/10.1007/s42247-020-00152-8.Search in Google Scholar

87. Bandini, S, Saavedra, A, Sarti, GC. Vacuum membrane distillation: experiments and modeling. AIChE J 1997;43:398–408. https://doi.org/10.1002/aic.690430213.Search in Google Scholar

88. Maria, T, Lidia, B. The investigation of ethanol separation by the membrane distillation process. Pol J Chem Technol 2011;13:66–9. https://doi.org/10.2478/v10026-011-0040-7.Search in Google Scholar

89. Udriot, H, Ampuero, S, Marison, IW, Von Stockar, U. Extractive fermentation of ethanol using membrane distillation. Biotechnol Lett 1989;11:509–14. https://doi.org/10.1007/bf01026651.Search in Google Scholar

90. Calibo, RL, Matsumura, M, Takahashi, J, Kataoka, H. Ethanol stripping by pervaporation using porous PTFE membrane. J Ferment Technol 1978;65:665–74. https://doi.org/10.1016/0385-6380(87)90009-4.Search in Google Scholar

91. Garcia-Payo, MC, Izquierdo-Gil, MA, Fernández-Pineda, C. Air gap membrane distillation of aqueous alcohol solutions. J Membr Sci 2000;169:61–80. https://doi.org/10.1016/s0376-7388(99)00326-9.Search in Google Scholar

92. Blume, I, Wijmans, JG, Baker, RW. The separation of dissolved organics from water by pervaporation. J Membr Sci 1990;49:253–86. https://doi.org/10.1016/s0376-7388(00)80643-2.Search in Google Scholar

93. Tuan, VA, Li, S, Falconer, JL, Noble, RD. Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes. J Membr Sci 2002;196:111–23. https://doi.org/10.1016/s0376-7388(01)00590-7.Search in Google Scholar

94. Garcia, M, Sanz, MT, Beltran, S. Separation by pervaporation of ethanol from aqueous solutions and effect of other components present in fermentation broths. J Chem Technol Biotechnol 2009;84:1873–82. https://doi.org/10.1002/jctb.2259.Search in Google Scholar

95. David, MW, Jaichander, S, Guillen-Burrieza, E, Arafat, HA, Lienhard, JH. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 2014;356:294–313.10.1016/j.desal.2014.06.031Search in Google Scholar

96. Chang, YS, Leow, HTL, Ooi, BS. Membrane distillation for water recovery and its fouling phenomena. J Membr Sci Res 2020;6:107–24.Search in Google Scholar

97. Choudhury, MR, Anwar, N, Jassby, D, Rahaman, MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process – a review. Adv Colloid Interface Sci 2019;269:370–99. https://doi.org/10.1016/j.cis.2019.04.008.Search in Google Scholar PubMed

98. Naidu, G, Jeong, S, Vigneswaran, S, Hwang, TM, Choi, YJ, Kim, SH. A review on fouling of membrane distillation. Desalination Water Treat 2015;57:10052–76. https://doi.org/10.1080/19443994.2015.1040271.Search in Google Scholar

99. Naidu, G, Tijing, L, Johir, MAH, Shon, H, Vigneswaran, S. Hybrid membrane distillation: resource, nutrient and energy recovery. J Membr Sci 2020;599. https://doi.org/10.1016/j.memsci.2020.117832.Search in Google Scholar

100. Kong, ZY, Sánchez-Ramírez, E, Yang, A, Shen, W, Segovia-Hernández, JG, Sunarso, J. Process intensification from conventional to advanced distillations: past, present, and future. Chem Eng Res Des 2022;188:378–92. https://doi.org/10.1016/j.cherd.2022.09.056.Search in Google Scholar

101. Nadimi, M, Shahrooz, M, Wang, R, Yang, X, Duke, MC. Process intensification with reactive membrane distillation: a review of hybrid and integrated processes. Desalin 2024;573. https://doi.org/10.1016/j.desal.2023.117182.Search in Google Scholar

102. Li, Z, Huang, X, Wang, L, Chen, Y, Shi, T, Shen, W. Sustainable and efficient separation of ternary multi-azeotropic mixture butanone/ethanol/water based on the intensified reactive extractive distillation: process design, multi-objective optimization, and multi-criteria decision-making. Sep Purif Technol 2025;355. https://doi.org/10.1016/j.seppur.2024.129694.Search in Google Scholar

103. Tian, M, Yin, Y, Zhang, Y, Li, H. Membrane distillation goes green: advancements in green membrane preparation and renewable energy utilization. Desalination 2025;597:118344. https://doi.org/10.1016/j.desal.2024.118344.Search in Google Scholar

104. Wu, X, Feron, P, Ng, D, Wang, H, Xie, Z. Review emerging application of forward osmosis and membrane distillation for post-combustion CO2. Chem Eng J 2024;501:157333. https://doi.org/10.1016/j.cej.2024.157333.Search in Google Scholar

105. Moriwaki, M, Velazquez, J, Ruiz, JC, Matsuda, K, Alcantara-Avila, JR. Synthesis of hybrid membrane distillation processes with optimal structures for ethanol dehydration. Comput Chem Eng 2023;178. https://doi.org/10.1016/j.compchemeng.2023.108385.Search in Google Scholar

106. Kim, HS, Cho, GS, Park, YG, Park, K. Energy self-sustainable operation of solar-powered pressure-retarded membrane distillation: modeling, implementation viability, and economic feasibility study. Desalination 2024;592:118076. https://doi.org/10.1016/j.desal.2024.118076.Search in Google Scholar

107. Jawed, AS, Nassar, L, Hegab, HM, Merwe, RV, Marzooq, FA, Banat, F, et al.. Review article recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024;10:e31656. https://doi.org/10.1016/j.heliyon.2024.e31656.Search in Google Scholar PubMed PubMed Central

108. Seraj, S, Mohammadi, T, Tofighy, MA. Graphene-based membranes for membrane distillation applications: a review. J Environ Chem Eng 2022;10. https://doi.org/10.1016/j.jece.2022.107974.Search in Google Scholar

109. Hegab, HM, Zou, L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci 2015;484:95–106. https://doi.org/10.1016/j.memsci.2015.03.011.Search in Google Scholar

110. Tiwary, SK, Singh, M, Chavan, SV, Karim, A. Graphene oxide-based membranes for water desalination and purification. 2D Mater Appl 2024;8:27. https://doi.org/10.1038/s41699-024-00462-z.Search in Google Scholar

111. Alkhouzaam, A, Qiblawey, H. Functional GO-based membranes for water treatment and desalination: fabrication methods, performance and advantages. A review. Chemosphere 2021;274. https://doi.org/10.1016/j.chemosphere.2021.129853.Search in Google Scholar PubMed

112. Aletheia, SP, Syauqi, A, Khaira, K, Rafi, MM. Techno-economic analysis of biodiesel and bioethanol production from chlorella sp. algae biomass. E3S Web Conf 2024;503. https://doi.org/10.1051/e3sconf/202450302004.Search in Google Scholar

113. Woldemariam, D, Kullab, A, Khan, EU, Martin, A. Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: industrial-scale techno economic study. Renew Energy 2017;128:484–94. https://doi.org/10.1016/j.renene.2017.06.009.Search in Google Scholar

114. Khayet, M, Matsuura, T. Pervaporation and vacuum membrane distillation processes: modeling and experiments. AIChE J 2004;50:1697–712. https://doi.org/10.1002/aic.10161.Search in Google Scholar

115. Battisti, R, Galeazzi, A, Prifti, K, Manenti, F, Antonio, R, Machado, F, et al.. Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery. Appl Energy 2021;297:117185. https://doi.org/10.1016/j.apenergy.2021.117185.Search in Google Scholar

116. Lutze, P, Gorak, A. Reactive and membrane-assisted distillation: recent developments and perspective. Chem Eng Res Des 2013;91:1978–97. https://doi.org/10.1016/j.cherd.2013.07.011.Search in Google Scholar

117. Sanap, PP, Mahajan, YS. Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. Rev Chem Eng 2023;39:297–328. https://doi.org/10.1515/revce-2020-0114.Search in Google Scholar

118. Sanap, P, Katariya, A, Mahajan, Y. Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence. Int J Chem React Eng 2024;22:661–74. https://doi.org/10.1515/ijcre-2024-0019.Search in Google Scholar

119. Haelssig, JB, Thibault, J, Tremblay, AY. Numerical investigation of membrane dephlegmation: a hybrid pervaporation–distillation process for ethanol recovery. Chem Eng Process Process Intensif 2011;50:1226–36. https://doi.org/10.1016/j.cep.2011.08.003.Search in Google Scholar

120. Chong, KC, Lai, SO. Recent progress in membrane distillation. J Technol 2014;70:97–103. https://doi.org/10.11113/jt.v70.3445.Search in Google Scholar

121. Muhammad, NIS, Rosentrater, KA. Economic assessment of bioethanol recovery using membrane distillation for food waste fermentation. Bioengineering 2020;7:15. https://doi.org/10.3390/bioengineering7010015.Search in Google Scholar PubMed PubMed Central

122. Tow, EW, Warsinger, DM, Trueworthy, AM, Thiel, J, Zubair, SM, Myerson, AS, et al.. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J Membr Sci 2018;556:352–64. https://doi.org/10.1016/j.memsci.2018.03.065.Search in Google Scholar

123. Ezugbe, EO, Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 2020;10:89. https://doi.org/10.3390/membranes10050089.Search in Google Scholar PubMed PubMed Central

124. Mahmoudi, F, Ng, D, Ang, K, Xie, Z. Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: development of an off-grid prototype. Sol Energy 2024;284:113090. https://doi.org/10.1016/j.solener.2024.113090.Search in Google Scholar

125. Tashtoush, B, Ghadia, MA, Tashtoush, N. Advancing solar-powered hybrid FO-MD desalination: integrating PVT collectors and PCM for sustainable water production in residential building. Energy Build 2024;313:114246.10.1016/j.enbuild.2024.114246Search in Google Scholar

126. Kumar, R, Ghosh, A, Pal, P. Fermentative energy conversion: renewable carbon source to biofuels (ethanol) using Saccharomyces cerevisiae and downstream purification through solar driven membrane distillation and nanofiltration. Energy Convers Manag 2017;150:545–57. https://doi.org/10.1016/j.enconman.2017.08.054.Search in Google Scholar

127. Shukla, S, Mericq, JP, Belleville, MP, Hengl, N, Benes, NE, Vankelecom, I, et al.. Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation. J Membr Sci 2018;545:150–7. https://doi.org/10.1016/j.memsci.2017.09.061.Search in Google Scholar

128. Qoriati, D, Hsieh, YK, Susane, H, You, SJ. Performance assessment and optimization of adsorption-assisted air gap membrane distillation process for remediation of chromium-contaminated groundwater. J Environ Chem Eng 2024;12:112594. https://doi.org/10.1016/j.jece.2024.112594.Search in Google Scholar

129. Fonseka, C, Ryu, S, Cho, Y, Naidu, G, Kandasamy, J, Thiruvenkatachari, R, et al.. Selective recovery of europium from real acid mine drainage by using novel amine based modified SBA15 adsorbent and membrane distillation system. J Water Proc Eng 2023;56:104551. https://doi.org/10.1016/j.jwpe.2023.104551.Search in Google Scholar

130. Ryu, S, Naidu, G, Moon, H, Vigneswaran, S. Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage. Chemosphere 2020;260:127528. https://doi.org/10.1016/j.chemosphere.2020.127528.Search in Google Scholar PubMed

131. Yadav, A, Singh, K, Panda, AB, Labhasetwar, P, Shahi, V. Membrane distillation crystallization for simultaneous recovery of water and salt from tannery industry wastewater using TiO2 modified poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposite membranes. J Water Proc Eng 2021;44:102393. https://doi.org/10.1016/j.jwpe.2021.102393.Search in Google Scholar

132. Frolkova, AK, Raeva, VM. Bioethanol dehydration: state of the art. Theor Found Chem Eng 2010;44:545–56. https://doi.org/10.1134/s0040579510040342.Search in Google Scholar

133. Zentou, H, Abidin, ZZ, Yunus, R, Radiah, D, Biak, A, Korelskiy, D. Review overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes 2019;7:458. https://doi.org/10.3390/pr7070458.Search in Google Scholar

134. Maitra, S, Singh, V. A consolidated bioprocess design to produce multiple high-value platform chemicals from lignocellulosic biomass and its technoeconomic feasibility. J Clean Prod 2022;377:134383. https://doi.org/10.1016/j.jclepro.2022.134383.Search in Google Scholar

135. Guzman-Martínez, CE, Castro-Montoya, AJ, Napoles-Rivera, F. Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor–separator process and azeotropic distillation. Clean Technol Environ Policy 2019;21:2061–71. https://doi.org/10.1007/s10098-019-01762-5.Search in Google Scholar

136. Díaz, VHG, Tost, GO. Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification. Bioresour Bioprocess 2017;4:12. https://doi.org/10.1186/s40643-017-0142-z.Search in Google Scholar PubMed PubMed Central

137. Ali, K, Arafat, HA, Ali, MIH. Detailed numerical analysis of air gap membrane distillation performance using different membrane materials and porosity. Desalin; 2023, 551.10.1016/j.desal.2023.116436Search in Google Scholar

138. Bindels, M, Carvalho, J, Gonzalez, CB, Brand, N, Nelemans, B. Techno-economic assessment of seawater reverse osmosis (SWRO) brine treatment with air gap membrane distillation (AGMD). Desalin 2020;489:114532. https://doi.org/10.1016/j.desal.2020.114532.Search in Google Scholar

139. Kazi, FK, Fortman, JA, Anex, RP, David, DH, Aden, A, Dutta, A, et al.. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010;89:S20–8. https://doi.org/10.1016/j.fuel.2010.01.001.Search in Google Scholar

140. Schwantes, R, Chavan, K, Winter, D, Felsmann, C, Pfafferott, J. Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application. Desalin 2018;428:50–68. https://doi.org/10.1016/j.desal.2017.11.026.Search in Google Scholar

141. Reddy, KS, Sharon, H. Energy-environment-economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production. Energy Convers Manag 2017;151:259–85. https://doi.org/10.1016/j.enconman.2017.08.064.Search in Google Scholar

142. Achiou, B, Aaddane, S, Adlane, S, Harrati, A, Elidrissi, ZC, Belgada, A, et al.. Low-cost ceramic peridotite membrane developed with geomaterial-based sintering aids for textile wastewater treatment. J Environ Chem Eng 2025;13:116375. https://doi.org/10.1016/j.jece.2025.116375.Search in Google Scholar

143. Imad, M, Castro-Munoz, R. Review ongoing progress on pervaporation membranes for ethanol separation. Membranes 2023;13:848. https://doi.org/10.3390/membranes13100848.Search in Google Scholar PubMed PubMed Central

144. Heydari, H, Salehian, S, Amiri, S, Soltanieh, M, Musavi, SA. UV-cured polyvinyl alcohol MXene mixed matrix membranes for enhancing pervaporation performance in dehydration of ethanol. Polym Test 2023;123. https://doi.org/10.1016/j.polymertesting.2023.108046.Search in Google Scholar

145. Gupta, O, Roy, S, Rao, L, Mitra, S. Article graphene oxide-carbon nanotube (GO-CNT) hybrid mixed matrix membrane for pervaporative dehydration of ethanol. Membranes 2022;12:1227. https://doi.org/10.3390/membranes12121227.Search in Google Scholar PubMed PubMed Central

146. Lee, YH, Chen, CH, Umi Fazara, MA, Hatim, MDMI. Production of fuel grade anhydrous ethanol: a review. IOP Conf Ser Earth Environ Sci 2021;765:012016. https://doi.org/10.1088/1755-1315/765/1/012016.Search in Google Scholar

147. Zarraa, RM, Nosier, S, Zatout, AA, Abdel-Azi, MH, Al-Geundi M, S. Efficient ethanol separation from water using vacuum membrane distillation. Egypt J Chem 2024;67:77–87.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/cppm-2025-0023).


Received: 2025-02-06
Accepted: 2025-06-26
Published Online: 2025-07-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cppm-2025-0023/pdf
Scroll to top button