Abstract
Separation, purification and recovery of chemicals has become an essential attribute of process industries. Process intensifications (PI) like reactive separations (RS), membrane reactors (MR) and advanced membrane separation techniques can be effectively used for this purpose. Membrane distillation (MD) has been used in applications like desalination of sea water, brackish water treatment and brine treatment. MD can also be used for recovery of volatile, nonvolatile chemicals with greater effectiveness and better economics. This review critically adjudges the application of MD for recovery of chemicals especially ethyl alcohol (ethanol, EtOH). Technical aspects like membrane configurations, membrane materials, comparison with other membrane separations, economic aspects and industrial applications are some of the key features of this review. Interplay of parameters and membrane performance is discussed. Challenges like long term sustainability, membrane fouling, scale up, hybrid processes are reviewed in considerable detail. Directions for further research are indicated.
-
Research ethics: The research ethics have been followed to the best of our knowledge.
-
Informed consent: Not needed.
-
Author contributions: Both the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not used.
-
Conflict of interest: The authors declare no conflict of interest.
-
Research funding: Nil.
-
Data availability: All data is made available through the submission itself.
Nomenclature
- MD:
-
Membrane distillation
- MBS:
-
Membrane based separations
- MR:
-
Membrane reactor
- RS:
-
Reactive separation
- MSP:
-
Membrane separation process
- PV:
-
Pervaporation
- RD:
-
Reactive distillation
- DCMD:
-
Direct contact membrane distillation
- AGMD:
-
Air gap membrane distillation
- SGMD:
-
Sweeping gas membrane distillation
- VMD:
-
Vacuum membrane distillation
- RO:
-
Reverse osmosis
- EtOH:
-
Ethanol
- PTFE:
-
Polytetrafluoroethylene
- PP:
-
Polypropylene
- PVDF:
-
Polyvinylidene fluoride
- PI:
-
Process intensification
- MinSP:
-
Minimum selling price
- IRR:
-
Internal rate return
- ROI:
-
Rate of interest
- NPV:
-
Net present value
- MED:
-
Multieffect distillation
- HIDiC:
-
Heat integrated distillation column
- TAFFD:
-
Thermosyphon assisted falling film distillation
- PTMSP:
-
Poly [(1-trimethylsilyl)-l-propyne]
- POMS:
-
Poly (octylmethyl siloxane)
- PDMS:
-
Poly (dimethylsiloxane)
- FS:
-
Flat sheet
- HF:
-
Hollow fiber
- GO:
-
Graphene oxide
- PES:
-
Polyethersulfone
- PS:
-
Polysulfone
- LEP:
-
Liquid entry pressure
- HS:
-
Hybrid separations
- PSD:
-
Pore size distribution
- MD-RED:
-
MD – reverse electrodialysis
- MD-PRO:
-
MD – pressure retarded osmosis
- MD-FO:
-
MD – forward osmosis
- rGO:
-
Reduced graphene oxide
- CNT:
-
Carbon nano tubes
- GNP:
-
Graphene nano - plate
- FO:
-
Forward osmosis
- VP:
-
Vapor permeation
- VLE:
-
Vapor Liquid equilibrium
- ED:
-
Electrodialysis
- LLE:
-
Liquid-liquid-extraction
- PSA:
-
Pressure swing adsorption
- MTBE:
-
Methyl tertiary butyl ether
References
1. Kumakiri, I, Yokota, M, Tanaka, R, Shimada, Y, Kiatkittipong, W, Lim, JW, et al.. Process intensification in bio-ethanol production–recent developments in membrane separation. Processes 2021;9:1028. https://doi.org/10.3390/pr9061028.Search in Google Scholar
2. Kiss, AA, Olga, M, Readi, K. An industrial perspective on membrane distillation processes. J Chem Technol Biotechnol 2018;93:2047–55.10.1002/jctb.5674Search in Google Scholar
3. Dinh, LM, Jacob, P, Chettiyapan, V. Direct contact and sweeping gas membrane distillation for process intensification – a comparative study. Desalination Water Treat 2017;89:53–64. https://doi.org/10.5004/dwt.2017.21371.Search in Google Scholar
4. Kargari, A, Yousefi, A. Process intensification through magnetic treatment of seawater for production of drinking water by membrane distillation process: a novel approach for commercialization membrane distillation process. Chem Eng Process Process Intensif 2021;167. https://doi.org/10.1016/j.cep.2021.108543.Search in Google Scholar
5. Zare, S, Kargari, A. Process intensification in the direct contact membrane distillation (DCMD) desalination by patterning membrane surface: a CFD study. Chem Eng Process Process Intensif 2024;205. https://doi.org/10.1016/j.cep.2024.110027.Search in Google Scholar
6. Li, B, Li, Z, Mai, Z, Xiang, S, Hu, M, Li, C, et al.. Bioinspired hierarchical structure with intensified anti-scaling capacity for real seawater membrane distillation. Desalination 2025;601. https://doi.org/10.1016/j.desal.2025.118539.Guan PZKSearch in Google Scholar
7. Baharudin, L, Indera, AA, Watson, MJ, Yip, A. Process intensification in multifunctional reactors: a review of multi-functionality by catalytic structures, internals, operating modes, and unit integrations. Chem Eng Process Process Intensif 2021;168. https://doi.org/10.1016/j.cep.2021.108561.Search in Google Scholar
8. Dalanta, F, Handoko, DT, Hadiyanto, H, Kusworo, TD. Recent implementations of process intensification strategy in membrane-based technology: a review. Chem Eng Res Des 2024;202:74–91. https://doi.org/10.1016/j.cherd.2023.12.014.Search in Google Scholar
9. Samadi, A, Ni, T, Fontananova, E, Tang, G, Shon, H, Zhao, S. Engineering antiwetting hydrophobic surfaces for membrane distillation: a review. Desalination 2023;563:21. https://doi.org/10.1016/j.desal.2023.116722.Search in Google Scholar
10. Muhamad, NAS, Mokhtar, NM, Naim, R, Lau, WJ, Ismail, AF. A review of membrane distillation process – before, during and after testing. Int J Eng Tech Sci 2019;6:1.10.15282/ijets.v6i1.1549Search in Google Scholar
11. Efrem, C, Enrico, D. Membrane distillation and related operations – a review. Separ Purif Rev 2005;34:35–86. https://doi.org/10.1081/spm-200054951.Search in Google Scholar
12. Ali, A, Shirazi, MMA, Nthunya, L, Castro-Munoz, R, Norafiqah, I, Tavajohi, N, et al.. Progress in module design for membrane distillation. Desalination 2024;581. https://doi.org/10.1016/j.desal.2024.117584.Search in Google Scholar
13. Panayotova, M, Panayotov, V. Application of membrane processes in mining and mineral processing. Web Conf 2021;280:08016. https://doi.org/10.1051/e3sconf/202128008016.Search in Google Scholar
14. Ngo, T-T-M, Nguyen, T-D-N, Nguyen, H-H, Hoang, T-K-D, Bui, X-T. Review on membrane module configurations used for membrane distillation process. Geosci Eng 2019;1:1–10.,Search in Google Scholar
15. Vane, LM. Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. J Chem Technol Biotechnol 2019;94:343–65. https://doi.org/10.1002/jctb.5839.Search in Google Scholar PubMed PubMed Central
16. Jeganes, R, Matsuura, T, Bilad, MR, El-badawya, TH, Aziza, F, Ismaila, AF, et al.. Polymeric membranes for desalination using membrane distillation: a review. Desalination 2020;490:114530. https://doi.org/10.1016/j.desal.2020.114530.Dzarfan, OMHSearch in Google Scholar
17. Khalid, A, Aslam, M, Qyyum, MA, Faisal, A, Khan, AL, Ahmed, F, et al.. Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew Sustain Energy Rev 2019;105:427–43. https://doi.org/10.1016/j.rser.2019.02.002.Search in Google Scholar
18. Cipollina, A, Sparti, MGD, Tamburini, A, Micale, G. Development of a membrane distillation module for solar energy seawater desalination. Chem Eng Res Des 2012;90:2101–21. https://doi.org/10.1016/j.cherd.2012.05.021.Search in Google Scholar
19. Lijo, F, Farah, EA, Hilal, N. Review advances in membrane distillation module configuration. Membrane 2022;12:81.10.3390/membranes12010081Search in Google Scholar PubMed PubMed Central
20. Cassano, A, Conidi, C, Drioli, E. A comprehensive review of membrane distillation and osmotic distillation in agro-food applications. J Mem Sci Res 2020;6:304–18.Search in Google Scholar
21. Curcio, E, Drioli, E. Membrane distillation and related operations – a review. Separ Purif Rev 2013;34:35–86. https://doi.org/10.1081/spm-200054951.Search in Google Scholar
22. Tijing, LD, Choi, J-S, Lee, S, Kim, S-H, Shon, HK. Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 2014;453:435–62. https://doi.org/10.1016/j.memsci.2013.11.022.Search in Google Scholar
23. Alessandro, F, Macedonio, F, Drioli, E. Review new materials and phenomena in membrane distillation. Chemistry 2023;5:65–84. https://doi.org/10.3390/chemistry5010006.Search in Google Scholar
24. Parani, S, Oluwafemi, OS. Review membrane distillation: recent configurations, membrane surface engineering, and applications. Membranes 2021;11:934. https://doi.org/10.3390/membranes11120934.Search in Google Scholar PubMed PubMed Central
25. Afsari, M, Shon, HK, Tijing, LD. Janus membranes for membrane distillation: recent advances and challenges. Adv Colloid Interface Sci 2021;289. https://doi.org/10.1016/j.cis.2021.102362.Search in Google Scholar PubMed
26. Qasim, M, Samad, IU, Darwish, NA, Hilal, N. Comprehensive review of membrane design and synthesis for membrane distillation. Desalination 2021;518. https://doi.org/10.1016/j.desal.2021.115168.Search in Google Scholar
27. Nassif, AG, Ibrahim, SS, Majdi, HS, Alsalhy, QF. Ethanol separation from an ethanol–water solution using vacuum membrane distillation. Membranes 2022;12:807. https://doi.org/10.3390/membranes12080807.Search in Google Scholar PubMed PubMed Central
28. Li, J, Zhou, W, Fan, S, Xiao, Z, Liu, Y, Liu, J, et al.. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane. Bioresour Technol 2018;268:708–14. https://doi.org/10.1016/j.biortech.2018.08.055.Search in Google Scholar PubMed
29. Nova, CJM, Nunez, FWB, Espriella, RJC-DL. Operating conditions influence on VMD and SGMD for ethanol recovery from aqueous solutions. J. Oil, Gas Alternative Energy Sources 2015;6:69–80. https://doi.org/10.29047/01225383.21.Search in Google Scholar
30. Lewandowicz, G, Białas, W, Marczewski, B, Szymanowska, D. Application of membrane distillation for ethanol recovery during fuel ethanol production. J Membr Sci 2011;375:212–9. https://doi.org/10.1016/j.memsci.2011.03.045.Search in Google Scholar
31. Izquierdo-Gill, MA, Jonsson, G. Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). J Membr Sci 2003;214:113–30. https://doi.org/10.1016/s0376-7388(02)00540-9.Search in Google Scholar
32. Shahua, VT, Thombre, SB. Air gap membrane distillation: a review. J Renew Sustain Energy 2019;11:4. https://doi.org/10.1063/1.5063766.Search in Google Scholar
33. Sanap, PP, Mahajan, YS. Ethyl alcohol-water separation by extractive distillation: simulation using aspen plus™ and experimental validation. Chem Technol 2024;67:86–93.10.6060/ivkkt.20246703.6914Search in Google Scholar
34. Sanap, PP, Mahajan, YS. Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. Rev Chem Eng 2023;39:297–328. https://doi.org/10.1515/revce-2020-0114.Search in Google Scholar
35. Sanap, PP, Diwan, A, Mahajan, YS. A critical overview of the use of biodiesel as an alternative fuel: techno-economic perspective. International conference on emerging trends in engineering yukthi; 2023. p. 168–77.10.2139/ssrn.4552154Search in Google Scholar
36. Patrick, L, Balannec, B, Fouchard-Le, GL, Sayed, W, Cabrol, AW, Hayet, D, et al.. Air-gap membrane distillation for the separation of bioethanol from algal-based fermentation broth. Sep Purif Technol 2019;213:255–63. https://doi.org/10.1016/j.seppur.2018.12.047.Search in Google Scholar
37. Panupong, C, Santi, K, Thanyalak, C, Sujitra, W. Review on membranes for ethanol-water separation. Silpakorn Univ Sci Technol J 2016;10:201.Search in Google Scholar
38. Fuqiang, J, Dongliang, H, Haipeng, X, Xiaodong, Z, Yan, L, Hui, M, et al.. Ethanol recovery from a model broth by the fermentation-extraction distillation coupling process. Chem Eng Process Process Intensif 2019;145:107669. https://doi.org/10.1016/j.cep.2019.107669.Search in Google Scholar
39. Bernardo, AC, Denise, MGF, Frederico, AK. Membrane distillation and pervaporation for ethanol removal: are we comparing in the right way. Separ Sci Technol 2018;54:110–27. https://doi.org/10.1080/01496395.2018.1498518.Search in Google Scholar
40. Li, G, Bai, P. New operation strategy for separation of ethanol−water by extractive distillation. Ind Eng Chem Res 2012;51:2723–9. https://doi.org/10.1021/ie2026579.Search in Google Scholar
41. Nomura, M, Bin, T, Nakao, S. Selective ethanol extraction from fermentation broth using a silicalite membrane. Sep Purif Technol 2002;27:59–66. https://doi.org/10.1016/s1383-5866(01)00195-2.Search in Google Scholar
42. Burnwal, PK, Pal, MMO, Chaurasia, SP. Synthesis of hybrid PVDF–PTFE membrane using nonhazardous solvent for ethanol - water separation through membrane distillation. J Hazard Toxic Radioact Waste 2022;26:1–11. https://doi.org/10.1061/(asce)hz.2153-5515.0000710.Search in Google Scholar
43. Kumar, R, Ghosh, AK, Pal, P. Fermentative ethanol production from Madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Convers Manag 2019;181:593–607. https://doi.org/10.1016/j.enconman.2018.12.050.Search in Google Scholar
44. Gupta, O, Roy, S, Mitra, S. Microwave induced membrane distillation for enhanced ethanol−water separation on a carbon nanotube immobilized membrane. Ind Eng Chem Res 2019;58:18313–9. https://doi.org/10.1021/acs.iecr.9b02376.Search in Google Scholar
45. Shirazi, MMA, Ali, K, Tabatabaei, M. Sweeping gas membrane distillation (SGMD) as an alternative for integration of bioethanol processing: study on a commercial membrane and operating parameters. Chem Eng Commun 2013;202:457–66.10.1080/00986445.2013.848805Search in Google Scholar
46. Bandini, S, Gostoh, C, Sarti, GC. Separation efficiency in vacuum membrane distillation. J Membr Sci 1992;73:217–29. https://doi.org/10.1016/0376-7388(92)80131-3.Search in Google Scholar
47. Shi, J-Y, Zhao, Z-P, Zhu, C-Y. Studies on simulation and experiments of ethanol-water mixture separation by VMD using a PTFE flat membrane module. Sep Purif Technol 2013;123:53–63. https://doi.org/10.1016/j.seppur.2013.12.015.Search in Google Scholar
48. Tomaszewska, M, Bialonczyk, L. Ethanol production from whey in a bioreactor coupled with direct contact membrane distillation. Catal Today 2016;268:156–63. https://doi.org/10.1016/j.cattod.2016.01.059.Search in Google Scholar
49. Tomaszewska, M, Bialonczyk, L. Production of ethanol from lactose in a bioreactor integrated with membrane distillation. Desalination 2013;323:114–9. https://doi.org/10.1016/j.desal.2013.01.026.Search in Google Scholar
50. Gryta, M. The fermentation process integrated with membrane distillation. Sep Purif Technol 2001;24:283–96. https://doi.org/10.1016/s1383-5866(01)00132-0.Search in Google Scholar
51. Jafari, A, Kebria, MRS, Rahimpour, A, Bakeri, G. Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air gap membrane distillation. Chem Eng Process Process Intensif 2018;126:222–31. https://doi.org/10.1016/j.cep.2018.03.010.Search in Google Scholar
52. Banat, FA, Simandl, J. Membrane distillation for dilute ethanol separation from aqueous streams. J Membr Sci 1999;163:333–48. https://doi.org/10.1016/s0376-7388(99)00178-7.Search in Google Scholar
53. Bhoumick, MC, Paul, S, Roy, S, Harvey, BG, Mitra, S. Recovery of isoamyl alcohol by graphene oxide immobilized membrane and air-sparged membrane distillation. Membranes 2024;14:49. https://doi.org/10.3390/membranes14020049.Search in Google Scholar PubMed PubMed Central
54. Carrio, JAG, Talluri, P, Toolahalli, ST, Echeverrigaray, SG, Neto, AHC. Gas stripping assisted vapor permeation using graphene membrane on silicon carbide for ethanol recovery. Sci Rep 2023;13:9781. https://doi.org/10.1038/s41598-023-37080-6.Search in Google Scholar PubMed PubMed Central
55. Intrchom, W, Roy, S, Mitra, S. Removal and recovery of methyl tertiary butyl ether (MTBE) from water using carbon nanotube and graphene oxide immobilized membranes. Nanomaterials 2020;10:578. https://doi.org/10.3390/nano10030578.Search in Google Scholar PubMed PubMed Central
56. Shin, Y, Taufique, MFN, Devanathan, R, Cutsforth, EC, Lee, J, Liu, W, et al.. Highly selective supported graphene oxide membranes for water-ethanol separation. Sci Rep 2019;9:2251. https://doi.org/10.1038/s41598-019-38485-y.Search in Google Scholar PubMed PubMed Central
57. Intrchom, W, Roy, S, Humoud, MS, Mitra, S. Immobilization of graphene oxide on the permeate side of a membrane distillation membrane to enhance flux. Membranes 2018;8:63. https://doi.org/10.3390/membranes8030063.Search in Google Scholar PubMed PubMed Central
58. Li, J, Zhou, W, Fan, S, Xiao, Z, Liu, Y, Liu, Y, et al.. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane. Bioresour Technol 2018;268:708–14. https://doi.org/10.1016/j.biortech.2018.08.055.Search in Google Scholar PubMed
59. Ali, K, Ismile, M, Ali, H. Case report energy and cost analysis of a multiple channel direct contact membrane distillation module: case study. Case Stud Chem Environ Eng 2023;8:10044.10.1016/j.cscee.2023.100449Search in Google Scholar
60. Hanen, A, Fatma, K, Hiba, A, Khaoula, H, Bechir, C, Qusay, A. Novel composite membrane based on recycled low-density polyethylene-alumina used for vacuum membrane distillation. Bull Natl Res Cent 2023;47:132. https://doi.org/10.1186/s42269-023-01103-z.Search in Google Scholar
61. Leaper, S, Abdel-Karim, A, Gorgojo, P. The use of carbon nanomaterials in membrane distillation membranes: a review. Front Chem Sci Eng 2021;15:755–74. https://doi.org/10.1007/s11705-020-1993-y.Search in Google Scholar
62. Vatanpour, V, Madaeni, SS, Khataee, AR, Salehi, E, Sirus, Z, Hossein, AMX. TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 2012;292:19–29. https://doi.org/10.1016/j.desal.2012.02.006.Search in Google Scholar
63. Abdallah, H, Moustafa, AF, AlAnezi, AAH, El-Sayed, HEM. Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 2014;346:30–6. https://doi.org/10.1016/j.desal.2014.05.003.Search in Google Scholar
64. Rastegarpanah, A, Mortaheb, HR. Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination 2016;377:99–107. https://doi.org/10.1016/j.desal.2015.09.008.Search in Google Scholar
65. Bhadra, M, Roy, S, Mitra, S. Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 2016;378:37–43. https://doi.org/10.1016/j.desal.2015.09.026.Search in Google Scholar
66. Leaper, S, Abdel-Karim, A, Faki, B, Luque-Alled, JM, Alberto, M, Vijayaraghavan, A, et al.. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-Functionalized graphene oxide for membrane distillation. J Membr Sci 2018;554:309–23. https://doi.org/10.1016/j.memsci.2018.03.013.Search in Google Scholar
67. Kanchanalai, P, Lively, RP, Realff, MJ, Kawajiri, Y. Cost and energy savings using an optimal design of reverse osmosis membrane pretreatment for dilute bioethanol purification. Ind Eng Chem Res 2013;52:11132–41. https://doi.org/10.1021/ie302952p.Search in Google Scholar
68. Peng, P, Shi, B, Lan, Y. A review of membrane materials for ethanol recovery by pervaporation. Separ Sci Technol 2011;46:234–46. https://doi.org/10.1080/01496395.2010.504681.Search in Google Scholar
69. Bolto, B, Hoang, M, Xie, Z. A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Process Process Intensif 2011;50:227–35. https://doi.org/10.1016/j.cep.2011.01.003.Search in Google Scholar
70. Zheng, P, Li, C, Wang, N, Li, J, Quanfu, A. Review the potential of pervaporation for biofuel recovery from fermentation: an energy consumption point of view. Chin J Chem Eng 2019;27:1296–306. https://doi.org/10.1016/j.cjche.2018.09.025.Search in Google Scholar
71. Miyata, H, Yahagi, S, Fukunaga, A, Suzuki, Y, Ishiodori, A, Kawabe, S. PTFE hollow fiber membrane designed for membrane distillation. Sumitomo Electric Technical Review; 2023.Search in Google Scholar
72. Zhao, H, Yang, J, Li, Z, Geng, Y, Li, J, Chen, M, et al.. Potential application of graphene oxide membranes in high-level liquid waste treatment. J Clean Prod 2020;266. https://doi.org/10.1016/j.jclepro.2020.121884.Search in Google Scholar
73. Jiang, Y, Biswas, P, Fortner, JD. A review of recent developments in graphene enabled membranes for water treatment. Environ Sci Wat Res Tech 2016;2:915–22. https://doi.org/10.1039/c6ew00187d.Search in Google Scholar
74. Hubadillah, SK, Tai, ZS, Othman, M, Harun, Z, Jamalludin, MR, Rahman, M, et al.. Hydrophobic ceramic membrane for membrane distillation: a mini review on preparation, characterization, and applications. Sep Purif Technol 2019;217:71–84. https://doi.org/10.1016/j.seppur.2019.02.014.Search in Google Scholar
75. Tai, ZH, Haiqal, M, Aziz, A, Othman, MHD, Dzahir, M, Hashim, NA, et al.. Ceramic membrane distillation for desalination. Separ Purif Rev 2020;49:317–56. https://doi.org/10.1080/15422119.2019.1610975.Search in Google Scholar
76. Chuntanalerg, P, Kulprathipanja, S, Chaisuwan, T, Wongkasemjit, S. Review on membranes for ethanol-water separation. Sci Eng Health Stud 2016;10:61–73.Search in Google Scholar
77. Hubadillah, SK, Iwamoto, Y, Jamalludin, MR, Othman, MHD. Recent progress on low-cost ceramic membrane for water and wastewater treatment. Ceram Int 2022;48:24157–91. https://doi.org/10.1016/j.ceramint.2022.05.255.Search in Google Scholar
78. Zhang, W, Wu, M, Yu, D, Wang, D. Preparation and properties of methyl trichloro silane grafted modified ceramic membranes for membrane distillation. J Environ Chem Eng 2025;13. https://doi.org/10.1016/j.jece.2025.115405.Search in Google Scholar
79. Chen, X, Ping, Z, Long, Y. The separation properties of alcohol–water mixture through silicalite-I-filled silicone rubber membranes by pervaporation. J Appl Polym Sci 1998;67:629–36. https://doi.org/10.1002/(sici)1097-4628(19980124)67:4<629::aid-app5>3.0.co;2-s.10.1002/(SICI)1097-4628(19980124)67:4<629::AID-APP5>3.0.CO;2-4Search in Google Scholar
80. Yan, X, Cheng, S, Ma, C, Li, J, Wang, G, Yang, C. D-spacing controllable GO membrane intercalated by sodium tetraborate pentahydrate for dye contamination wastewater treatment. J Hazard Mater 2022;422:126939. https://doi.org/10.1016/j.jhazmat.2021.126939.Search in Google Scholar
81. Alberto, M, Skuse, C, Tamaddondar, M, Gorgojo, P. Immobilized graphene oxide-based membranes for improved pore wetting resistance in membrane distillation. Desalination 2022;537. https://doi.org/10.1016/j.desal.2022.115898.Search in Google Scholar
82. Gkika, DA, Karmali, V, Lambropoulou, DA, Mitropoulos, AC, Kyzas, GZ. Membranes coated with graphene-based materials: a review. Membranes 2023;13:127. https://doi.org/10.3390/membranes13020127.Search in Google Scholar
83. Fuzil, NS, Othman, NH, Alias, NH, Shayuti, M, Shahruddin, MZ, Marpani, F, et al.. An overview on the use of graphene-based membranes for membrane distillation. Desalin Water Treat 2022;257:243–59. https://doi.org/10.5004/dwt.2022.28460.Search in Google Scholar
84. Kang, J, Kwon, O, Kim, JP, Kim, JY, Kim, J, Cho, Y, et al.. Graphene membrane for water-related environmental application: a comprehensive review and perspectives. ACS Environ Au 2024;16:35–60. https://doi.org/10.1021/acsenvironau.4c00088.Search in Google Scholar
85. Nene, S, Patil, G, Raghavarao, KSMS. Membrane distillation in food processing. In: Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications; 2008:513–51 pp.10.1201/9781420009484.ch19Search in Google Scholar
86. Hussain, A, Janson, A, Matar, JM, Adham, S. Membrane distillation: recent technological developments and advancements in membrane materials. Emergent Mater 2021;5:347–67. https://doi.org/10.1007/s42247-020-00152-8.Search in Google Scholar
87. Bandini, S, Saavedra, A, Sarti, GC. Vacuum membrane distillation: experiments and modeling. AIChE J 1997;43:398–408. https://doi.org/10.1002/aic.690430213.Search in Google Scholar
88. Maria, T, Lidia, B. The investigation of ethanol separation by the membrane distillation process. Pol J Chem Technol 2011;13:66–9. https://doi.org/10.2478/v10026-011-0040-7.Search in Google Scholar
89. Udriot, H, Ampuero, S, Marison, IW, Von Stockar, U. Extractive fermentation of ethanol using membrane distillation. Biotechnol Lett 1989;11:509–14. https://doi.org/10.1007/bf01026651.Search in Google Scholar
90. Calibo, RL, Matsumura, M, Takahashi, J, Kataoka, H. Ethanol stripping by pervaporation using porous PTFE membrane. J Ferment Technol 1978;65:665–74. https://doi.org/10.1016/0385-6380(87)90009-4.Search in Google Scholar
91. Garcia-Payo, MC, Izquierdo-Gil, MA, Fernández-Pineda, C. Air gap membrane distillation of aqueous alcohol solutions. J Membr Sci 2000;169:61–80. https://doi.org/10.1016/s0376-7388(99)00326-9.Search in Google Scholar
92. Blume, I, Wijmans, JG, Baker, RW. The separation of dissolved organics from water by pervaporation. J Membr Sci 1990;49:253–86. https://doi.org/10.1016/s0376-7388(00)80643-2.Search in Google Scholar
93. Tuan, VA, Li, S, Falconer, JL, Noble, RD. Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes. J Membr Sci 2002;196:111–23. https://doi.org/10.1016/s0376-7388(01)00590-7.Search in Google Scholar
94. Garcia, M, Sanz, MT, Beltran, S. Separation by pervaporation of ethanol from aqueous solutions and effect of other components present in fermentation broths. J Chem Technol Biotechnol 2009;84:1873–82. https://doi.org/10.1002/jctb.2259.Search in Google Scholar
95. David, MW, Jaichander, S, Guillen-Burrieza, E, Arafat, HA, Lienhard, JH. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 2014;356:294–313.10.1016/j.desal.2014.06.031Search in Google Scholar
96. Chang, YS, Leow, HTL, Ooi, BS. Membrane distillation for water recovery and its fouling phenomena. J Membr Sci Res 2020;6:107–24.Search in Google Scholar
97. Choudhury, MR, Anwar, N, Jassby, D, Rahaman, MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process – a review. Adv Colloid Interface Sci 2019;269:370–99. https://doi.org/10.1016/j.cis.2019.04.008.Search in Google Scholar PubMed
98. Naidu, G, Jeong, S, Vigneswaran, S, Hwang, TM, Choi, YJ, Kim, SH. A review on fouling of membrane distillation. Desalination Water Treat 2015;57:10052–76. https://doi.org/10.1080/19443994.2015.1040271.Search in Google Scholar
99. Naidu, G, Tijing, L, Johir, MAH, Shon, H, Vigneswaran, S. Hybrid membrane distillation: resource, nutrient and energy recovery. J Membr Sci 2020;599. https://doi.org/10.1016/j.memsci.2020.117832.Search in Google Scholar
100. Kong, ZY, Sánchez-Ramírez, E, Yang, A, Shen, W, Segovia-Hernández, JG, Sunarso, J. Process intensification from conventional to advanced distillations: past, present, and future. Chem Eng Res Des 2022;188:378–92. https://doi.org/10.1016/j.cherd.2022.09.056.Search in Google Scholar
101. Nadimi, M, Shahrooz, M, Wang, R, Yang, X, Duke, MC. Process intensification with reactive membrane distillation: a review of hybrid and integrated processes. Desalin 2024;573. https://doi.org/10.1016/j.desal.2023.117182.Search in Google Scholar
102. Li, Z, Huang, X, Wang, L, Chen, Y, Shi, T, Shen, W. Sustainable and efficient separation of ternary multi-azeotropic mixture butanone/ethanol/water based on the intensified reactive extractive distillation: process design, multi-objective optimization, and multi-criteria decision-making. Sep Purif Technol 2025;355. https://doi.org/10.1016/j.seppur.2024.129694.Search in Google Scholar
103. Tian, M, Yin, Y, Zhang, Y, Li, H. Membrane distillation goes green: advancements in green membrane preparation and renewable energy utilization. Desalination 2025;597:118344. https://doi.org/10.1016/j.desal.2024.118344.Search in Google Scholar
104. Wu, X, Feron, P, Ng, D, Wang, H, Xie, Z. Review emerging application of forward osmosis and membrane distillation for post-combustion CO2. Chem Eng J 2024;501:157333. https://doi.org/10.1016/j.cej.2024.157333.Search in Google Scholar
105. Moriwaki, M, Velazquez, J, Ruiz, JC, Matsuda, K, Alcantara-Avila, JR. Synthesis of hybrid membrane distillation processes with optimal structures for ethanol dehydration. Comput Chem Eng 2023;178. https://doi.org/10.1016/j.compchemeng.2023.108385.Search in Google Scholar
106. Kim, HS, Cho, GS, Park, YG, Park, K. Energy self-sustainable operation of solar-powered pressure-retarded membrane distillation: modeling, implementation viability, and economic feasibility study. Desalination 2024;592:118076. https://doi.org/10.1016/j.desal.2024.118076.Search in Google Scholar
107. Jawed, AS, Nassar, L, Hegab, HM, Merwe, RV, Marzooq, FA, Banat, F, et al.. Review article recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024;10:e31656. https://doi.org/10.1016/j.heliyon.2024.e31656.Search in Google Scholar PubMed PubMed Central
108. Seraj, S, Mohammadi, T, Tofighy, MA. Graphene-based membranes for membrane distillation applications: a review. J Environ Chem Eng 2022;10. https://doi.org/10.1016/j.jece.2022.107974.Search in Google Scholar
109. Hegab, HM, Zou, L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci 2015;484:95–106. https://doi.org/10.1016/j.memsci.2015.03.011.Search in Google Scholar
110. Tiwary, SK, Singh, M, Chavan, SV, Karim, A. Graphene oxide-based membranes for water desalination and purification. 2D Mater Appl 2024;8:27. https://doi.org/10.1038/s41699-024-00462-z.Search in Google Scholar
111. Alkhouzaam, A, Qiblawey, H. Functional GO-based membranes for water treatment and desalination: fabrication methods, performance and advantages. A review. Chemosphere 2021;274. https://doi.org/10.1016/j.chemosphere.2021.129853.Search in Google Scholar PubMed
112. Aletheia, SP, Syauqi, A, Khaira, K, Rafi, MM. Techno-economic analysis of biodiesel and bioethanol production from chlorella sp. algae biomass. E3S Web Conf 2024;503. https://doi.org/10.1051/e3sconf/202450302004.Search in Google Scholar
113. Woldemariam, D, Kullab, A, Khan, EU, Martin, A. Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: industrial-scale techno economic study. Renew Energy 2017;128:484–94. https://doi.org/10.1016/j.renene.2017.06.009.Search in Google Scholar
114. Khayet, M, Matsuura, T. Pervaporation and vacuum membrane distillation processes: modeling and experiments. AIChE J 2004;50:1697–712. https://doi.org/10.1002/aic.10161.Search in Google Scholar
115. Battisti, R, Galeazzi, A, Prifti, K, Manenti, F, Antonio, R, Machado, F, et al.. Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery. Appl Energy 2021;297:117185. https://doi.org/10.1016/j.apenergy.2021.117185.Search in Google Scholar
116. Lutze, P, Gorak, A. Reactive and membrane-assisted distillation: recent developments and perspective. Chem Eng Res Des 2013;91:1978–97. https://doi.org/10.1016/j.cherd.2013.07.011.Search in Google Scholar
117. Sanap, PP, Mahajan, YS. Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. Rev Chem Eng 2023;39:297–328. https://doi.org/10.1515/revce-2020-0114.Search in Google Scholar
118. Sanap, P, Katariya, A, Mahajan, Y. Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence. Int J Chem React Eng 2024;22:661–74. https://doi.org/10.1515/ijcre-2024-0019.Search in Google Scholar
119. Haelssig, JB, Thibault, J, Tremblay, AY. Numerical investigation of membrane dephlegmation: a hybrid pervaporation–distillation process for ethanol recovery. Chem Eng Process Process Intensif 2011;50:1226–36. https://doi.org/10.1016/j.cep.2011.08.003.Search in Google Scholar
120. Chong, KC, Lai, SO. Recent progress in membrane distillation. J Technol 2014;70:97–103. https://doi.org/10.11113/jt.v70.3445.Search in Google Scholar
121. Muhammad, NIS, Rosentrater, KA. Economic assessment of bioethanol recovery using membrane distillation for food waste fermentation. Bioengineering 2020;7:15. https://doi.org/10.3390/bioengineering7010015.Search in Google Scholar PubMed PubMed Central
122. Tow, EW, Warsinger, DM, Trueworthy, AM, Thiel, J, Zubair, SM, Myerson, AS, et al.. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J Membr Sci 2018;556:352–64. https://doi.org/10.1016/j.memsci.2018.03.065.Search in Google Scholar
123. Ezugbe, EO, Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 2020;10:89. https://doi.org/10.3390/membranes10050089.Search in Google Scholar PubMed PubMed Central
124. Mahmoudi, F, Ng, D, Ang, K, Xie, Z. Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: development of an off-grid prototype. Sol Energy 2024;284:113090. https://doi.org/10.1016/j.solener.2024.113090.Search in Google Scholar
125. Tashtoush, B, Ghadia, MA, Tashtoush, N. Advancing solar-powered hybrid FO-MD desalination: integrating PVT collectors and PCM for sustainable water production in residential building. Energy Build 2024;313:114246.10.1016/j.enbuild.2024.114246Search in Google Scholar
126. Kumar, R, Ghosh, A, Pal, P. Fermentative energy conversion: renewable carbon source to biofuels (ethanol) using Saccharomyces cerevisiae and downstream purification through solar driven membrane distillation and nanofiltration. Energy Convers Manag 2017;150:545–57. https://doi.org/10.1016/j.enconman.2017.08.054.Search in Google Scholar
127. Shukla, S, Mericq, JP, Belleville, MP, Hengl, N, Benes, NE, Vankelecom, I, et al.. Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation. J Membr Sci 2018;545:150–7. https://doi.org/10.1016/j.memsci.2017.09.061.Search in Google Scholar
128. Qoriati, D, Hsieh, YK, Susane, H, You, SJ. Performance assessment and optimization of adsorption-assisted air gap membrane distillation process for remediation of chromium-contaminated groundwater. J Environ Chem Eng 2024;12:112594. https://doi.org/10.1016/j.jece.2024.112594.Search in Google Scholar
129. Fonseka, C, Ryu, S, Cho, Y, Naidu, G, Kandasamy, J, Thiruvenkatachari, R, et al.. Selective recovery of europium from real acid mine drainage by using novel amine based modified SBA15 adsorbent and membrane distillation system. J Water Proc Eng 2023;56:104551. https://doi.org/10.1016/j.jwpe.2023.104551.Search in Google Scholar
130. Ryu, S, Naidu, G, Moon, H, Vigneswaran, S. Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage. Chemosphere 2020;260:127528. https://doi.org/10.1016/j.chemosphere.2020.127528.Search in Google Scholar PubMed
131. Yadav, A, Singh, K, Panda, AB, Labhasetwar, P, Shahi, V. Membrane distillation crystallization for simultaneous recovery of water and salt from tannery industry wastewater using TiO2 modified poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposite membranes. J Water Proc Eng 2021;44:102393. https://doi.org/10.1016/j.jwpe.2021.102393.Search in Google Scholar
132. Frolkova, AK, Raeva, VM. Bioethanol dehydration: state of the art. Theor Found Chem Eng 2010;44:545–56. https://doi.org/10.1134/s0040579510040342.Search in Google Scholar
133. Zentou, H, Abidin, ZZ, Yunus, R, Radiah, D, Biak, A, Korelskiy, D. Review overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes 2019;7:458. https://doi.org/10.3390/pr7070458.Search in Google Scholar
134. Maitra, S, Singh, V. A consolidated bioprocess design to produce multiple high-value platform chemicals from lignocellulosic biomass and its technoeconomic feasibility. J Clean Prod 2022;377:134383. https://doi.org/10.1016/j.jclepro.2022.134383.Search in Google Scholar
135. Guzman-Martínez, CE, Castro-Montoya, AJ, Napoles-Rivera, F. Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor–separator process and azeotropic distillation. Clean Technol Environ Policy 2019;21:2061–71. https://doi.org/10.1007/s10098-019-01762-5.Search in Google Scholar
136. Díaz, VHG, Tost, GO. Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification. Bioresour Bioprocess 2017;4:12. https://doi.org/10.1186/s40643-017-0142-z.Search in Google Scholar PubMed PubMed Central
137. Ali, K, Arafat, HA, Ali, MIH. Detailed numerical analysis of air gap membrane distillation performance using different membrane materials and porosity. Desalin; 2023, 551.10.1016/j.desal.2023.116436Search in Google Scholar
138. Bindels, M, Carvalho, J, Gonzalez, CB, Brand, N, Nelemans, B. Techno-economic assessment of seawater reverse osmosis (SWRO) brine treatment with air gap membrane distillation (AGMD). Desalin 2020;489:114532. https://doi.org/10.1016/j.desal.2020.114532.Search in Google Scholar
139. Kazi, FK, Fortman, JA, Anex, RP, David, DH, Aden, A, Dutta, A, et al.. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010;89:S20–8. https://doi.org/10.1016/j.fuel.2010.01.001.Search in Google Scholar
140. Schwantes, R, Chavan, K, Winter, D, Felsmann, C, Pfafferott, J. Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application. Desalin 2018;428:50–68. https://doi.org/10.1016/j.desal.2017.11.026.Search in Google Scholar
141. Reddy, KS, Sharon, H. Energy-environment-economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production. Energy Convers Manag 2017;151:259–85. https://doi.org/10.1016/j.enconman.2017.08.064.Search in Google Scholar
142. Achiou, B, Aaddane, S, Adlane, S, Harrati, A, Elidrissi, ZC, Belgada, A, et al.. Low-cost ceramic peridotite membrane developed with geomaterial-based sintering aids for textile wastewater treatment. J Environ Chem Eng 2025;13:116375. https://doi.org/10.1016/j.jece.2025.116375.Search in Google Scholar
143. Imad, M, Castro-Munoz, R. Review ongoing progress on pervaporation membranes for ethanol separation. Membranes 2023;13:848. https://doi.org/10.3390/membranes13100848.Search in Google Scholar PubMed PubMed Central
144. Heydari, H, Salehian, S, Amiri, S, Soltanieh, M, Musavi, SA. UV-cured polyvinyl alcohol MXene mixed matrix membranes for enhancing pervaporation performance in dehydration of ethanol. Polym Test 2023;123. https://doi.org/10.1016/j.polymertesting.2023.108046.Search in Google Scholar
145. Gupta, O, Roy, S, Rao, L, Mitra, S. Article graphene oxide-carbon nanotube (GO-CNT) hybrid mixed matrix membrane for pervaporative dehydration of ethanol. Membranes 2022;12:1227. https://doi.org/10.3390/membranes12121227.Search in Google Scholar PubMed PubMed Central
146. Lee, YH, Chen, CH, Umi Fazara, MA, Hatim, MDMI. Production of fuel grade anhydrous ethanol: a review. IOP Conf Ser Earth Environ Sci 2021;765:012016. https://doi.org/10.1088/1755-1315/765/1/012016.Search in Google Scholar
147. Zarraa, RM, Nosier, S, Zatout, AA, Abdel-Azi, MH, Al-Geundi M, S. Efficient ethanol separation from water using vacuum membrane distillation. Egypt J Chem 2024;67:77–87.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/cppm-2025-0023).
© 2025 Walter de Gruyter GmbH, Berlin/Boston