Startseite Naturwissenschaften Comparative study of deterministic and stochastic optimization algorithms applied to the absorption of CO2 by alkanolamine solution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparative study of deterministic and stochastic optimization algorithms applied to the absorption of CO2 by alkanolamine solution

  • Azeddine Kabouche EMAIL logo und Dounia Kabouche
Veröffentlicht/Copyright: 13. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A model based on simulated annealing approach is used with e-UNIQUAC model as well as two other algorithms to study the absorption of carbon dioxide by monoethanolamine solutions. In this work, we propose to compare the performance (through the knowledge of RMSD values) of two stochastic methods, namely the GA (genetic algorithm) and SA (simulated annealing) methods and a deterministic method that is the simplex method. These methods were applied to the absorption of carbon dioxide by an alkanolamine solution using a chemical equilibrium model and a thermodynamic equilibrium model. The latter is based on the use of the modified-UNIQUAC (UNIQUAC-electrolyte) model instead of e-NRTL model for the liquid phase and a fugacity model for the vapor phase. The chemical equilibrium in this work represents the absorption of CO2 by monoethanolamine solution at different temperatures. Solving the coupled system of material and charge balances gives us the carbon dioxide pressure while taking into account the non-ideality of the system. The three-optimization methods show good agreement with the experimental data with a better performance of the simulated annealing method..


Corresponding author: Azeddine Kabouche, Laboratory of Applied Chemistry and Materials Technology, Larbi Ben M’hidi University, Oum El Bouaghi, Algeria, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Kabouche, A, Meniai, A, Bencheikh-Lehocine, M. Modeling the absorption of acidic gases by alkanolamine solutions incorporating several reactions. Chem Eng Technol 2005;28:67–71. https://doi.org/10.1002/ceat.200407008.Suche in Google Scholar

2. Djaballah, ML. Etude Thermodynamique de l’Absorption du Dioxyde de Carbone. Oum EL Bouaghi: University of Labi Ben M’hidi; 2016.Suche in Google Scholar

3. Djaballah, ML, Kabouche, A. Modeling vapor-liquid equilibrium of CO2 in aqueous MEA using hybrid genetic based algorithm. J N Technol Mater 2019;08:87–92.Suche in Google Scholar

4. Grancher, P, Blanc, C, Mathieu, P, Nougayrède, J, Tellier, J. Développements Récents des Techniques de Claus Appliquées aux Gaz Naturels et aux Gaz de Raffineries. Information Chimie 1980;199:145.Suche in Google Scholar

5. Spendley, W, Hext, G, Himsworth, F. Sequential application of simplex designs in optimization and evolutionary operation. Technometrics 1962;4:441–61.10.1080/00401706.1962.10490033Suche in Google Scholar

6. Nelder, J, Mead, R. A simplex method for function minimization. Comput J 1965;7:308–13. https://doi.org/10.1093/comjnl/7.4.308.Suche in Google Scholar

7. Yıldız, BS, Pholdee, N, Panagant, N, Bureerat, S, Yildiz, AR, Sait, SM. A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems. Eng Comput 2021;38:871–83.10.1007/s00366-020-01268-5Suche in Google Scholar

8. JH Holland, Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artifitial intelligence. Michigan: University of Michigan Press; 1975.Suche in Google Scholar

9. Kirkpatrick, S, Gelatt, CD, Vecchi, MP. Optimization by simulated annealing. Science 1983;220:671–80. https://doi.org/10.1126/science.220.4598.671.Suche in Google Scholar PubMed

10. Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, Teller, AH, Teller, E. Equations of state calculations by fast computing machines. J Chem Phys 1953;21:1087–92. https://doi.org/10.1063/1.1699114.Suche in Google Scholar

11. Hastings, WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970;57:97–109. https://doi.org/10.2307/2334940.Suche in Google Scholar

12. Kanokmedhakul, Y, Bureerat, S, Panagant, N, Radpukdee, T, Pholdee, N, Yildiz, AR. Metaheuristic-assisted complex H-infinity flight control tuning for the Hawkeye unmanned aerial vehicle: a comparative study. Expert Syst Appl 2024;248:123428. https://doi.org/10.1016/j.eswa.2024.123428.Suche in Google Scholar

13. Kunakote, T, Sabangban, N, Kumar, S, Tejani, GG, Panagant, N, Pholdee, N. Comparative performance of twelve metaheuristics for wind farm layout optimisation. Archiv Comput Method Eng 2022;29:717–730.10.1007/s11831-021-09586-7Suche in Google Scholar

14. Kabouche, A, Boultif, A, Abidi, A, Gherraf, N. Interaction parameter estimation in liquid–liquid phase equilibrium modeling using stochastic and hybrid algorithms. Fluid Phase Equil 2012;336:113–21. https://doi.org/10.1016/j.fluid.2012.09.002.Suche in Google Scholar

15. Anosri, S, Panagant, N, Champasak, P, Bureerat, S, Thipyopas, C, Kumar, S. A comparative study of state-of-the-art metaheuristics for solving many-objective optimization problems of fixed wing unmanned aerial vehicle conceptual design. Arch Comput Methods Eng 2023;30:3657–71. https://doi.org/10.1007/s11831-023-09914-z.Suche in Google Scholar

16. Sait, SM, Mehta, P, Yıldız, AR, Yıldız, BS. Optimal design of structural engineering components using artificial neural network-assisted crayfish algorithm. Mater Test 2024;66:1439–48. https://doi.org/10.1515/mt-2024-0075.Suche in Google Scholar

17. Meng, Z, Yıldız, BS, Li, G, Zhong, C, Mirjalili, S, Yildiz, AR. Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: a comparative study. Struct Multidiscip Optim 2023;66:191. https://doi.org/10.1007/s00158-023-03639-0.Suche in Google Scholar

18. Dou, ZC, Chu, SC, Zhuang, Z, Yildiz, AR, Pan, JS. GBRUN: a gradient search-based binary Runge Kutta optimizer for feature selection. J Internet Technol 2024;25:341–53. https://doi.org/10.53106/160792642024052503001.Suche in Google Scholar

19. Mehta, P, Yıldız, BS, Sait, SM, Yıldız, AR. Gradient-based optimizer for economic optimization of engineering problems. Mater Test 2022;64:690–6. https://doi.org/10.1515/mt-2022-0055.Suche in Google Scholar

20. Mehta, P, Yildiz, AR, Sait, SM, Yildiz, BS. Enhancing the structural performance of engineering components using the geometric mean optimizer. Mater Test 2024;66:23–46.10.1515/mt-2024-0005Suche in Google Scholar

21. Yıldız, BS, Mehta, P, Panagant, N, Mirjalili, S, Yildiz, AR. A novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problems. J Comput Design Eng 2022;9:2452–65. https://doi.org/10.1093/jcde/qwac113.Suche in Google Scholar

22. Gürses, D, Mehta, P, Patel, V, Sait, SM, Yildiz, AR. Artificial gorilla troops algorithm for the optimization of a fine plate heat exchanger. Mater Test 2022;64:1325–31. https://doi.org/10.1515/mt-2022-0049.Suche in Google Scholar

23. Gürses, D, Mehta, P, Sait, SM, Yildiz, AR. African vultures optimization algorithm for optimization of shell and tube heat exchangers. Mater Test 2022;64:1234–41. https://doi.org/10.1515/mt-2022-0050.Suche in Google Scholar

24. Panagant, N, Pholdee, N, Bureerat, S, Yildiz, AR, Mirjalili, S. A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems. Arch Comput Method Eng 2021;28:1–17 pp.10.1007/s11831-021-09531-8Suche in Google Scholar

25. Gürses, D, Mehta, P, Sait, SM, Kumar, S, Yildiz, AR. A multi-strategy boosted prairie dog optimization algorithm for global optimization of heat exchangers. Mater Test 2023;65:1396–404. https://doi.org/10.1515/mt-2023-0082.Suche in Google Scholar

26. Thomsen, K, Rasmussen, P. Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems. Chem Eng Sci 1999;54:1787–802. https://doi.org/10.1016/s0009-2509(99)00019-6.Suche in Google Scholar

27. Thomsen, K. Modeling electrolyte solution with the extended universal quasi-chemical (UNIQUAC) model. Pure Appl Chem 2005;77:531–42. https://doi.org/10.1351/pac200577030531.Suche in Google Scholar

28. Melanie, M. An introduction to genetic algorithms. Cambridge, MA: MIT Press; 1996:205.Suche in Google Scholar

29. Adouane, A. Modélisation des Equilibres entre les Phases Liquides - Application à la substitution des solvants polluants [Master en Génie des Procédés]. ALGERIE: Département Chimie Industrielle. Université Mohamed Khider de Biskra; 2015.Suche in Google Scholar

30. Hasse, H, Wagner, IH, Kim, J, Maurer, G, Ermatchkova. Solubility of carbon dioxide in aqueous solutions of monoethanolamine in the low and high gas loading regions. J Chem Eng Data 2013;58:883–95. https://doi.org/10.1021/je301030z.Suche in Google Scholar

31. Djaballah, ML, Kabouche, A. Vapour-Liquid equilibrium prediction of carbon dioxide in an aqueous alkanolamine solution using deterministic and stochastic algorithms. Chem Eng Trans 2015;43:1837.Suche in Google Scholar

32. Kabouche, A, Meniai, A, Hasseine, A. Estimation of coalescence parameters in an agitated extraction column using a hybrid algorithm. Chem Eng Technol 2011;34:784–90. https://doi.org/10.1002/ceat.201000224.Suche in Google Scholar

33. Champasak, P, Panagant, N, Pholdee, N, Bureerat, S, Rajendran, P, Yildiz, AR. Grid-based many-objective optimiser for aircraft conceptual design with multiple aircraft configurations. Eng Appl Artif Intell 2023;126:1106951.10.1016/j.engappai.2023.106951Suche in Google Scholar

Received: 2024-06-05
Accepted: 2024-08-30
Published Online: 2024-11-13

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2024-0045/html?lang=de
Button zum nach oben scrollen