Startseite Naturwissenschaften Development of a superstructure optimization framework with heat integration for the production of biodiesel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of a superstructure optimization framework with heat integration for the production of biodiesel

  • Thien An Huynh ORCID logo EMAIL logo , Meik B. Franke und Edwin Zondervan
Veröffentlicht/Copyright: 19. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work presents a superstructure for maximizing the annual profit of biodiesel production with Advanced Interactive Multidimensional Modeling System (AIMMS). The novelty features are the combination of pinch-based heat integration with a wide range of biodiesel feedstocks and the application of superstructure to evaluate the effect of uncertainties on the optimized design. The case study is a pilot refinery with the infeed capacity of 8000 tonnes feedstock per year. The biodiesel production route from tallow with reactive distillation technology and a heterogeneous acid catalyst has the highest total annual profit of 3.5 million USDs. The heating and cooling utilities can be reduced by 30 % with the heat integration. The result from the sensitivity analysis shows that the biodiesel and feedstock prices, and the production capacity have the most pronounced effects. From technical assessment, the reactive distillation process is the best choice for biodiesel production from different feedstocks.


Corresponding author: Thien An Huynh, Laboratory of Process Systems Engineering, Sustainable Process Technology, Faculty of Science and Technology, University of Twente, Meander, kamer 216, Postbus 217, 7500 AE, Enschede, The Netherlands, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Thien An Huynh, first author, did the data collection, literature study and the research, wrote and revised the manuscript, answered the questions from reviewers. Meik B. Franke, second author, supervised and advised the research, checked the results and reviewed the manuscript. Edwin Zondervan, third author, supervised and advised the research, checked the results, answered the questions of reviewers and reviewed the manuscript. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

Appendix

The description of superstructure options includes name, cost, reference capacity and equipment size exponent.

Option Name Cost (USD) Reference capacity (kg/h) Chemical engineering index Equipment size exponent Reference
1 Waste cooking oil 740 (USD/t) Price in 2020
2 Tallow 625 (USD/t) Price in 2020
3 Linseed oil 1127 (USD/t) Price in 2020
4 Rapeseed oil 1050 (USD/t) Price in 2020
5 Canola oil 950 (USD/t) Price in 2020
6 Algae oil 1500 (USD/t) Price in 2020
7 Waste cooking oil 740 (USD/t) Price in 2020
8 Tallow 625 (USD/t) Price in 2020
9 Linseed oil 1127 (USD/t) Price in 2020
10 Rapeseed oil 1050 (USD/t) Price in 2020
11 Canola oil 950 (USD/t) Price in 2020
12 Algae oil 1500 (USD/t) Price in 2020
13 Esterification/Pretreatment 677,000 1268 401.7 0.6 [28]
14 Transesterification CSTR homogeneous alkali-catalyzed 292,000 1175.71 401.7 0.53 [20]
15 Reactive distillation column homogeneous alkali-catalyzed 232,000 4892.95 556.8 0.78 [32]
16 Transesterification CSTR homogeneous alkali-catalyzed 292,000 1175.71 401.7 0.53 [20]
17 Reactive distillation column homogeneous alkali-catalyzed 232,000 4892.95 556.8 0.78 [32]
18 Transesterification CSTR homogeneous acid-catalyzed 680,000 2819 401.7 0.53 [20]
19 Transesterification multiphase reactor heterogeneous acid-catalyzed 75,000 1168.84 401.7 0.53 [20]
20 Reactive distillation column heterogeneous acid-catalyzed 236,400 4456.89 556.8 0.78 [29]
21 CSTR supercritical MeOH 639,000 2572 401.7 0.53 [20]
22 Heterogeneous enzyme CSTR 328,320 2054.4 521.9 0.53 [33]
23 Membrane reactor Heterogeneous acid-catalyzed 336,000 1971 596.2 0.68 [13]
24 Neutralization reactor + decanter H2SO4 150,000 2811.17 576.1 0.53 [34]
25 Neutralization reactor + decanter CaO 150,000 2811.17 576.1 0.53 [34]
26 Distillation column MeOH recovery homogeneous alkali-catalyzed 38,000 1227 401.7 0.78 [20]
27 Distillation column MeOH recovery homogeneous acid-catalyzed 152,000 2819 401.7 0.78 [20]
28 Distillation column MeOH recovery homogeneous alkali-catalyzed 38,000 1227 401.7 0.78 [20]
29 Distillation column MeOH recovery homogeneous acid-catalyzed 152,000 2819 401.7 0.78 [20]
30 Hydrocyclone 15,000 1172.88 401.7 0.6 [20]
31 Decanter glycerol separation reactive distillation process 113,200 4457 556.8 0.72 [32]
32 Decanter glycerol separation enzymatic process 32,850 1160 521.9 0.72 [33]
33 Distillation column MeOH recovery supercritical process 167,000 2529 401.7 0.78 [20]
34 Decanter glycerol separation 113,200 4457 556.8 0.72 [32]
35 Distillation MeOH purification homogeneous acid catalyzed 380,000 2811 576.1 0.78 [34]
36 L–L extraction column water washing homogeneous alkali-catalyzed 84,000 1120 401.7 0.78 [20]
37 Decanter glycerol separation 113,200 4457 556.8 0.72 [32]
38 Neutralization reactor + decanter H2SO4 150,000 2811.17 576.1 0.53 [34]
39 Neutralization reactor + decanter CaO 150,000 2811.17 576.1 0.53 [34]
40 Distillation MeOH recovery heterogeneous acid-catalyzed 28,000 1163 401.7 0.78 [20]
41 Distillation MeOH removal 140,000 1288.4 401.7 0.78 [28]
42 Decanter glycerol separation supercritical alcohol process 58,000 1170.33 401.7 0.72 [20]
43 Distillation MeOH separation catalytic membrane reactor 38,000 1227 401.7 0.78 [13]
44 Decanter glycerol homogeneous acid catalyzed 30,000 1107.67 576.1 0.72 [34]
45 Distillation FAME purification pre-treated alkali-catalyzed 102,000 1059.14 401.7 0.78 [20]
46 Distillation FAME purification homogeneous acid catalyzed including hexane distillation 256,000 1153.5 401.7 0.78 [28]
47 L–L extraction column water washing homogeneous acid-catalyzed 113,000 1313.95 401.7 0.78 [20]
48 Decanter glycerol separation heterogeneous acid-catalyzed 57,000 1149.8 401.7 0.72 [20]
49 Distillation FAME purification heterogeneous acid-catalyzed 95,000 1049.4 401.7 0.78 [20]
50 Distillation FAME purification supercritical process 146,000 1060.23 401.7 0.78 [20]
51 Distillation FAME purification (without oil) catalytic membrane reactor 324,000 2990.37 401.7 0.78 [13]
52 Distillation FAME purification homogeneous acid-catalyzed 560,000 1016 576.1 0.78 [34]
53 Distillation FAME purification heterogeneous acid-catalyzed 95,000 1049.4 401.7 0.78 [20]
54 Biodiesel sales 1060 (USD/t) Price in 2020
55 Waste glycerol disposal 15 (USD/t) [35]
56 Neutralization reactor glycerol 21,000 128 401.7 0.53 [28]
57 Crude glycerol sales 170 (USD/t) [36]
58 Neutralization reactor glycerol 21,000 128 401.7 0.53 [28]
59 Crude glycerol sales 170 (USD/t) [36]
60 Distillation glycerol purification MeOH, water removal 140,000 1288.4 401.7 0.78 [28]
61 Distillation glycerol purification MeOH, water removal 140,000 1288.4 401.7 0.78 [28]
62 Technical glycerol sales 895 (USD/t) [36]
63 Distillation glycerol purification MeOH, water removal 140,000 1288.4 401.7 0.78 [28]
64 Distillation glycerol purification MeOH, water removal 140,000 1288.4 401.7 0.78 [28]
65 Distillation glycerol purification MeOH, water removal 140,000 1288.4 401.7 0.78 [28]
66 Technical glycerol sales 895 (USD/t) [36]
67 Distillation glycerol purification MeOH, water removal 140,000 1288.4 401.7 0.78 [28]
68 Pure glycerol sales 1275 (USD/t) [36]

References

1. Yoro, KO, Daramola, MO. Chapter 1 – CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour, MR, Farsi, M, Makarem, MA, editors. Advances in carbon capture. Sawston: Woodhead Publishing; 2020:3–28 pp.10.1016/B978-0-12-819657-1.00001-3Suche in Google Scholar

2. Ritchie, H, Roser, M, Rosado, P. CO₂ and greenhouse gas emissions. Our World Data 2020. https://ourworldindata.org/co2-and-greenhouse-gas-emissions [Accessed 20 Dec 2020].Suche in Google Scholar

3. EurObserv’ ER. Renewable energy in transport barometer. Paris, France: Renewable Energies Observatory; 2021.Suche in Google Scholar

4. Hanaki, K, Portugal-Pereira, J. The effect of biofuel production on greenhouse gas emission reductions. In: Takeuchi, K, Shiroyama, H, Saito, O, Matsuura, M, editors. Biofuels and sustainability: holistic perspectives for policy-making. Tokyo: Springer; 2018:53–71 pp.10.1007/978-4-431-54895-9_6Suche in Google Scholar

5. Fazal, M, Rubaiee, S, Al-Zahrani, A. Overview of the interactions between automotive materials and biodiesel obtained from different feedstocks. Fuel Process Technol 2019;196:106178. https://doi.org/10.1016/j.fuproc.2019.106178.Suche in Google Scholar

6. Knothe, G, Krahl, J, Gerpen, JV, editors. 4 – biodiesel production. In: The biodiesel handbook, 2nd ed. Urbana: AOCS Press; 2010:31–96 pp.10.1016/B978-1-893997-62-2.50009-7Suche in Google Scholar

7. Kiss, AA, Dimian, AC, Rothenberg, G. Biodiesel production by integrated reactive-separation design. Comput Aided Chem Eng 2007;24:1283–8. https://doi.org/10.1016/s1570-7946(07)80238-0.Suche in Google Scholar

8. Zhang, Y, Dubé, M, McLean, D, Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 2003;90:229–40. https://doi.org/10.1016/s0960-8524(03)00150-0.Suche in Google Scholar PubMed

9. Cao, P, Dubé, MA, Tremblay, AY. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 2008;32:1028–36. https://doi.org/10.1016/j.biombioe.2008.01.020.Suche in Google Scholar

10. Gomez-Castro, FI, Segovia-Hernandez, JG, Hernandez-Castro, S, Rico-Ramirez, V, Gamiño-Arroyo, Z, Cano-Rodríguez, I. Alternatives for the production of biodiesel by supercritical technologies: a comparative study. Comput Aided Chem Eng 2013;32:7–12. https://doi.org/10.1016/b978-0-444-63234-0.50002-6.Suche in Google Scholar

11. Rodríguez-Palacio, MC, Cabrera-Cruz, RBE, Rolón-Aguilar, JC, Tobías-Jaramillo, R, Martínez-Hernández, M, Lozano-Ramírez, C. The cultivation of five microalgae species and their potential for biodiesel production. Energy Sustain Soc 2022;12:10 (2022). https://doi.org/10.1186/s13705-022-00337-5.Suche in Google Scholar

12. Mulyatun, M, Prameswari, J, Istadi, I, Widayat, W. Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: a review. Fuel 2022;314:122749. https://doi.org/10.1016/j.fuel.2021.122749.Suche in Google Scholar

13. Abdurakhman, YB, Putra, ZA, Bilad, MR, Nordin, NAHM, Wirzal, MDH. Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chem Eng Res Des 2018;134:564–74. https://doi.org/10.1016/j.cherd.2018.04.044.Suche in Google Scholar

14. Palm and rapeseed oil prices [Online]. https://www.neste.com/investors/market-data/palm-and-rapeseed-oil-prices#1fb175e1 [Accessed 17 March 2022].Suche in Google Scholar

15. Biodiesel prices (SME & FAME) [Online]. https://www.neste.com/investors/market-data/biodiesel-prices-sme-fame#1fb175e1 [Accessed 17 March 2022].Suche in Google Scholar

16. Waste – based market performance [Online]. http://www.greenea.com/en/market-analysis/ [Accessed 17 March 2022].Suche in Google Scholar

17. Karuppiah, R, Grossmann, IE. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput Chem Eng 2008;32:145–60. https://doi.org/10.1016/j.compchemeng.2007.03.007.Suche in Google Scholar

18. Sahinidis, NV. Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 2004;28:971–83. https://doi.org/10.1016/j.compchemeng.2003.09.017.Suche in Google Scholar

19. Clay, R, Grossmann, I. A disaggregation algorithm for the optimization of stochastic planning models. Comput Chem Eng 1997;21:751–74. https://doi.org/10.1016/s0098-1354(96)00286-4.Suche in Google Scholar

20. West, AH, Posarac, D, Ellis, N. Assessment of four biodiesel production processes using HYSYS.Plant. Bioresour Technol 2008;99:6587–601. https://doi.org/10.1016/j.biortech.2007.11.046.Suche in Google Scholar PubMed

21. Tula, AK, Babi, DK, Bottlaender, J, Eden, MR, Gani, R. A computer-aided software-tool for sustainable process synthesis-intensification. Comput Chem Eng 2017;105:74–95. https://doi.org/10.1016/j.compchemeng.2017.01.001.Suche in Google Scholar

22. Bart, JC, Palmeri, N, Cavallaro, S. 13 – valorisation of the glycerol by-product from biodiesel production. In: Bart, JC, Palmeri, N, Cavallaro, S, editors. Advances in biodiesel production: processes and technologies. Sawston: Woodhead Publishing; 2010:571–624 pp.10.1533/9781845697761.571Suche in Google Scholar

23. Seider, WD, Lewin, DR, Seader, JD, Widagdo, S, Gani, R, Ng, KM. Chapter 16 – cost accounting and capital cost estimation. In: Rajan, S, O’Sullivan, M, Ratts, L, editors. Product and process design principles: synthesis, analysis and evaluation, 4th ed. New Jersey: John Wiley & Sons, Inc.; 2016:426–94 pp.Suche in Google Scholar

24. Kenkel, P, Wassermann, T, Rose, C, Zondervan, E. A generic superstructure modeling and optimization framework on the example of bi-criteria power-to-methanol process design. Comput Chem Eng 2021;150:107327. https://doi.org/10.1016/j.compchemeng.2021.107327.Suche in Google Scholar

25. Galanopoulos, C, Kenkel, P, Zondervan, E. Superstructure optimization of an integrated algae biorefinery. Comput Chem Eng 2019;130:106530. https://doi.org/10.1016/j.compchemeng.2019.106530.Suche in Google Scholar

26. Seider, WD, Lewin, DR, Seader, JD, Widagdo, S, Gani, R, Ng, KM. Chapter 17 – annual costs, earnings, and profitability analysis. In: Rajan, S, O’Sullivan, M, Ratts, L, editors. Product and process design principles: synthesis, analysis and evaluation, 4th ed. New Jersey: John Wiley & Sons, Inc.; 2016:498–546 pp.Suche in Google Scholar

27. Sahinidis, NV. BARON: a general purpose global optimization software package. J Global Optim 1996;8:201–5. https://doi.org/10.1007/bf00138693.Suche in Google Scholar

28. Zhang, Y, Dubé, M, McLean, D, Kates, M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technol 2003;89:1–16. https://doi.org/10.1016/s0960-8524(03)00040-3.Suche in Google Scholar PubMed

29. Boon-anuwat, N-n., Kiatkittipong, W, Aiouache, F, Assabumrungrat, S. Process design of continuous biodiesel production by reactive distillation: comparison between homogeneous and heterogeneous catalysts. Chem Eng Process: Process Intensif 2015;92:33–44. https://doi.org/10.1016/j.cep.2015.03.025.Suche in Google Scholar

30. Myint, LL, El-Halwagi, MM. Process analysis and optimization of biodiesel production from soybean oil. Clean Technol Environ Policy 2009;11:263–76. https://doi.org/10.1007/s10098-008-0156-5.Suche in Google Scholar

31. Kiss, AA. Biodiesel and fatty esters. In: Process intensification technologies for biodiesel production. Cham: Springer Cham; 2014:9–24 pp.10.1007/978-3-319-03554-3_2Suche in Google Scholar

32. Poddar, T, Jagannath, A, Almansoori, A. Use of reactive distillation in biodiesel production: a simulation-based comparison of energy requirements and profitability indicators. Appl Energy 2017;185:985–97. https://doi.org/10.1016/j.apenergy.2015.12.054.Suche in Google Scholar

33. Sotoft, LF, Rong, B-G, Christensen, KV, Norddahl, B. Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresour Technol 2010;101:5266–74. https://doi.org/10.1016/j.biortech.2010.01.130.Suche in Google Scholar PubMed

34. Baroi, C, Dalai, AK. Process sustainability of biodiesel production process from green seed canola oil using homogeneous and heterogeneous acid catalysts. Fuel Process Technol 2015;133:105–19. https://doi.org/10.1016/j.fuproc.2015.01.004.Suche in Google Scholar

35. Santibañez, C, Varnero, MT, Bustamante, M. Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chil J Agric Res 2011;71:469–75. https://doi.org/10.4067/s0718-58392011000300019.Suche in Google Scholar

36. Ruy, ADdS, Ferreira, ALF, Bresciani, AÉ, Alves, RMd. B, Pontes, LAM. Market prospecting and assessment of the economic potential of glycerol from biodiesel. In: Basso, TP, Basso, TO, Basso, LC, editors. Biotechnological applications of biomass. London: IntechOpen; 2020.Suche in Google Scholar

Received: 2023-08-03
Accepted: 2024-01-02
Published Online: 2024-01-19

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2023-0071/pdf?lang=de
Button zum nach oben scrollen